were essentially: gait disorders (16 patients) and paresthesia (four other patients). The diagnosis of vitamin deficiency B12 and the implementation of the treatment were relatively late, on average 14 months after symptom onset. The physical examination found a posterior cord syndrome associated with a pyramidal syndrome in all the patients. It is noteworthy that a cerebellar syndrome was found in three patients and a vestibular syndrome in two.

The functional assessment found:
- eight wheelchair patients;
- 11 patients used technical aids for walking;
- six patients walked without help.

Care included rehabilitation sessions for all patients; eight patients required or anti-spasticity treatment. The outcome was marked by a relative functional improvement in 22 patients; three patients still had to use the wheelchair.

Conclusion.– The functional recovery of patients presenting combined spinal cord sclerosis depends on the gravity of the clinical deficiencies, on the precocity of the diagnosis and early treatment with vitamin replacement therapy.

http://dx.doi.org/10.1016/j.rehab.2012.07.531

P120-e

Tiredness and sequelae poliomyelitis

Z. Boukara a,*, A.C. Nouar a, H. Cherid a, S. Arbaoui a, O. Bensaber b, M. Bedjaoui c, M. Aoudjhane c

*Service de médecine physique et réadaptation, CHU Frants-Fanon-Blida, 9230 Blida, Algeria

bService de médecine physique et réadaptation, CHU Sidi Bel Abbes, Algeria

cService d'épidémiologie, CHU Blida, Blida, Algeria

*Corresponding author.

E-mail address: zouhirmpr@gmail.com.

Keywords: Tire; Syndrome post-polio; Multidisciplinary treatment

Objectives.– Tiredness is frequently met among survivors of poliomyelitis. The objectives of our study is to find the incidence of tiredness among our surviving Algerian patients of poliomyelitis, and to seek the correlation between the degree of tiredness and the various biometric and sociodemographic parameters.

Materials and methods.– A descriptive and prospective clinical study of 74 patients surviving of poliomyelitis, seen in consultation between years 2009 and 2012, by using a drawn up card taking in count the variables of balance of the various parameters: tiredness, biometric data, socio professional data and the various clinical signs of the syndrome post-poliomyelitis. SPPS 14.0 software used for the epidemiologic study.

Results.– The incidence of tiredness among survivors of poliomyelitis is considerably present at 80%, the peak of age between 40 to 50 years, the mailmen biometric (age, weight and IMC) and socioprofessional does not seem to have a significant influence on tiredness. A percentage of 70.3% of the survivors of polio present a syndrome post-poliomyelitis, and only the amyotrophie is found in significant report/ratio (P < 0.03).

Conclusions.– The assumption of responsibility must be based on the origin and the diagnosis of tiredness. The treatment of tiredness must consist of an education of the patient on the syndrome post-polio, the effort economy, the management of the rest, and the recourse to technical assistances. Rehabilitation to this end should act within a multidisciplinary framework.

http://dx.doi.org/10.1016/j.rehab.2012.07.532

P121-e

Thevenard’s disease or ulcero-mutilating acropathology syndrome: Case report and literature review

Y. El Anbari a, D. Cherquouai a, Y. Abdelletah, F. Lmidmani, A. El Fatimi

Service de médecine physique et de réadaptation fonctionnelle, CHU Ibn Rochd, 1, quartier des hôpitaux, 20100 Casablanca, Morocco

*Corresponding authors.

E-mail address: younesmpr@gmail.com.

Keywords: Thevenard’s disease; Ulcero-mutilating acropathology

Introduction.– The Thevenard disease is a rare familial ulcer-crustating acropathology, responsible for sensory peripheral neuropathy associated with dysautonomic syndrome. In clinical practice, diagnosis relies on the clinical data, electrophysiological and family. It is confirmed by molecular biology, neuromuscular biopsy an interest in differential diagnosis. The objective of this work and to recall this rare disease, often a source of handicap and difficulties in diagnosing and management.

Observation.– Mr. BM, 77 years old, who presented a peripheral neuropathy hereditary sensory and dysautonomic evolving since the age of 15 years and complicated plantar ulcers in both feet and repetitions of a chronic osteomyelitis of the metatarsophalangeal joints left. The electroneurography (EMG) showed a peripheral sensory polyneuropathy. Neuromuscular biopsy lead to Wallerian degeneration associated with hypomyelination. Radiographs of the left foot showed lysis of tarsus and metatarsus bones, leading to transmetatarsal amputation. A directed healing and an apparatus using initially a transitional aid to healing of the foot and orthopedic shoes are allowed for the recovery of autonomy in walking.

Discussion.– Thevenard’s disease refers to the type 1 hereditary neuropathies, sensory and autonomous autosomal dominant, who are much rarer than the Charcot-Marie-Tooth neuropathy. It evolves slowly from the second and third decades in the form of sensory disturbances thermoalgesic, causing painless ulcers at pressure points. The ulcers extend and appear then the plantar ulcers, a dislocation of the tarsus with an aspect of “cubic foot”, secondary infections in the form of analgesic panaris, and finally osteoarticular alterations of the skeleton of the foot that result in mutilation of the phalanges. The electroneurography (EMG) confirms the predominantly sensory polyneuropathy, neuromuscular biopsy can rule out other polyneuropathies resulting in altered sensitivity thermoalgesic, such as diabetic neuropathy, amyloid and paraamyloid neuropathy and leprous neuropathy. Genetic study confirms the diagnosis by identifying a mutation in SPTLC1. On the therapeutic level, no cure is available. However, preventive treatment of skin lesions is promordial.

http://dx.doi.org/10.1016/j.rehab.2012.07.533

P122-e

Estimated score of disability in multiple sclerosis (MS) through posturographic data analysis

O. Aagni a,*, F. Cavillon b, H. Cao c, L. Peyrodie c, M.A. Guyot a, P. Hautecoeur a, C. Donzé a

a Groupe hospitalier de l’institut catholique de Lille (GHICL), rue du Grand-But, 59462 Lomme, France

b Faculté libre de médecine de Lille (FLM), Lille, France

c Hautes études d’ingénieur Lille (HEI), Lille, France

*Corresponding author.

E-mail address: agnani.olivier@ghicl.net.

Keywords: Multiple sclerosis; Posturography; Recurrence quantified analysis

Introduction.– MS is a common neurological disease in young adults and balance disorders appear early. Posturography is an evaluation of balance disorders in orthostatic conditions. The scale used for assessing disability in MS is usually the EDSS. We propose a method for estimating the EDSS from posturographic data.

Material and method.– One hundred and eighteen subjects were included in this study: 89 MS defined by a MacDonald [1] (age = 46.1 ± 10.2 years, dd = 13.4 ± 8.8 years, EDSS = 2.74 ± 1) and 29 controls (age = 34.7 ± 12.3 years). Posturography was performed on Satel platform in standardized conditions (t = 51.2 sec, Fq = 40 Hz). We carried out various measures of center of pressure (CP): length, area, and recurrence quantified analysis (RQA) [2], established from posturographic data. Correlation coefficients between the EDSS and each RQA measurement were performed. A second order polynomial regression was used to obtain an estimation of the EDSS. Finally we calculated the average error between observed and estimated score.

Results.– The best correlations with EDSS were observed with the entropy (R = 0.8448, P < 0.05). The best results between observed and calculated EDSS from posturographic data were obtained through the recurrence percentage (70.49%, average error EDSS = 0.63).
Discussion/Conclusion.— We considered several methods for calculating the EDSS from posturographic data. Accelerations and velocities seem less discriminating than other RQA values. The speed and acceleration increase in proportion to EDSS (ANOVA, \(P < 0.05 \)), except for EDSS = 4 (average error greater). In this study we show that it is possible to estimate the EDSS from posturographic data. It would be interesting to combine this method with other measures to establish a model for regulating the balance in MS.

References

http://dx.doi.org/10.1016/j.rehab.2012.07.534