for 1426 days of hospitalization (mean hospital stay 40 days) for 6.15 rehabilitation sessions/week/patient (92% for neurological conditions including 43% for stroke). Eighty-one percent of the patients came from regular hospital wards (97% from acute care and rehabilitation units). At discharge from home care, 92% of patients had achieved the rehabilitation objective set at the time of admission: 35 patients were satisfied (no response available for 2 patients); 28 pursued their rehabilitation with a private practitioner, 4 attended day hospital clinics and 2 were rehospitalized.

The HCG is a complement to usual hospital rehabilitation care. In our experience, this home care follows logically the patient’s care programme after a full hospitalization by offering a coordinated programme of home care. The HCG pools the strengths of existing facilities allowing a rapid development of this activity. One of the difficulties is however the reimbursement policies of the national healthcare insurance which are not favourable for the profile of rehabilitation patients.

http://dx.doi.org/10.1016/j.rehab.2012.07.743

CO29-006-e

Assessing the precarity of physical and rehabilitation medicine patients with the EPICES score

B. Barrois *, S. Mokrab, S. Chiticariu, N. Chohra, C. Gerin, S. Ghemrani 
Service de MPR, CH Gonesse, BP 30071, rue B.-Février, 95503 Gonesse, France
*Corresponding author.
E-mail address: brigitte.barrois@ch-gonesse.fr.

Keywords: Precarity assessment; EPICES scale; PRM

Introduction.— The EPICES score (Évaluation de la Précarité et des Inégalités de santé dans les Centres d’Examens de Santé) is a tool used in the PRM ward to measure patient precarity.

Objective.— Compare the precarity level of patients hospitalized in our PRM unit (day care and full hospitalization) in 2011 and 2012 using the EPICES score.

Method.— Annual one-day cross-sectional analysis using the EPICES score.

Results.— A self-administered questionnaire was sent to the 38 patients hospitalized on the assessment day in March 2011 and in March 2012. The March 2011 assessment found precarity in 55% of patients, 66% for full hospitalisation and 41% for day hospital patients. The 2012 results are very similar: precarity in 58% of patients, 60% for total hospitalisation and 55% for day hospitalisation.

The age of the patients in precarious situations was not different from that in the total patient population. There was no difference between neurological or orthopaedic diseases.

Discussion—Conclusion.— The 2011–2012 comparison showed similar results: > 55% precarity, a image of the local population. Precarity was more frequent in full hospitalisation patients. No link was found with disease or age. It would be useful to analyse the impact on the mean length of hospital stay in a larger number of patients with the same disease. Systematic assessment with the EPICES score could be useful to organize patient discharge.

http://dx.doi.org/10.1016/j.rehab.2012.07.744

CO29-007-e

Self-rehabilitation program of fatiguing series of maximal contraction exercises in chronic peripheral facial paresis

M. Baude *, E. Hutin, A. Behnegar, J.-M. Gracies 
Service de médecine physique et de réadaptation, groupe hospitalier Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94000 Créteil, France
*Corresponding author.
E-mail address: marjolaine.baude@gmail.com.

Keywords: Self-rehabilitation; Peripheral facial paresis; Maximal contraction exercises; Fatigue; Nervous system plasticity

Introduction.— As of today there are no methods validated to promote recovery in patients with chronic (i.e. beyond one year post onset) peripheral facial paresis (PPF). This study reports on the effects of a self-rehabilitation program designed to optimize the synaptic plasticity phenomenon.

Methods.— Eleven consecutive patients (8F; age 45 ± 7 years) with chronic stable PFP of various etiologies were followed for at least two months while undergoing a self-rehabilitation program comprised of a fatiguing series of daily bilateral muscle contraction exercises of maximum intensity focused on 3 essential facial muscle groups: frontalis, zygomatic, and orbicularis oculi. Each contraction attempt was to be maintained for at least 3 seconds with a pause of 1 second or less before the next contraction. At each visit the patients had to give the therapist a written record of the exercises (specifying in particular the number of contractions up to the fatigue in each series) they had performed prior the visit. A single-blind evaluation before and after training was based on the “Creteil Scale” (CS) that we designed to rate 12 muscle groups from 0 to 3 (maximum score 36) on video recordings of facial testing.

Results.— The etiologies for PFP were idiopathic, tumorial, iatrogenic, traumatic, and congenital. One patient had bilateral PFP (12 hemifaces rehabilitated). The average PFP onset to treatment time was 13 ± 12 years and the mean duration of the rehabilitation treatment was 4 ± 2 months. Mean CS score improved from 17.3 ± 3.2 to 19.3 ± 3.4 (P < 0.001). Nine patients reported having done their exercises but only two provided written records.

Discussion.— High number repetition of maximal-intensity exercises and fatigue induction are three essential conditions for optimal involvement of nervous system plasticity. Patients with chronic PFP improved facial motor function within only four months of treatment, regardless of the amount of time since PFP onset, using self-rehabilitation treatment involving fatigue-inducing series of maximum intensity contraction exercises.

http://dx.doi.org/10.1016/j.rehab.2012.07.745