Introduction. – During a rehabilitation session, the use of robot-assisted device allows high number of movements, enhancing motor command in hemiparesis [1]. The robot can also be used as a tool to quantify effects of upper limb robot-assisted training associated with standard therapy in subacute stroke.

Methods. – Seventeen patients with subacute hemiparesis (52 ± 20 years; time since stroke 54 ± 27 days; upper limb Motricity Index, 31 ± 15/100; Functional Independence Measure, 74 ± 25/126) performed 16 sessions (4/week) of robot-assisted shoulder/elbow training (MIT-Manus, InMotion Inc., MA, USA) associated with standard therapy. Number of movements and assistance provided by the robot were collected at sessions S1, S8 and S16. Patients were also evaluated on the 4-target pointing task (14 cm apart) without robot-assistance, by measuring task success index (1 = target reached; 0 = not reached), hand trajectory length, velocity and smoothness index.

Results. – Overall, the mean number of movements performed per session with the robot was 681 ± 214 [357–1000]. At S8, there was an increase by 46% of the number of movements (S1, 513 ± 262; S8, 750 ± 261, P = 0.002), by a decrease by 8% of robot-assistance intensity (S1, 205 ± 7Nm; S8, 189 ± 23Nm, P = 0.009), and an improvement in task success index (+28%, P = 0.04), and in movement velocity (+61%, P = 0.007). Between S8 and S16, there was further increase in movement velocity (+50%, P = 0.0082) and a decrease in hand trajectory (~17%, P = 0.004). Smoothness remained unchanged.

Conclusion. – Robot-assisted training may provide high intensity training in combination with standard rehabilitation in subacute hemiparesis. With an upper limb rehabilitation program including robot-assisted training, kinematic improvement occurred from the first sessions and trajectory accuracy increased during the last sessions (S8–S16).

Reference


http://dx.doi.org/10.1016/j.rehab.2012.07.014

CO32-003-e

Effect of repeated sessions of combined anodal tDCS and peripheral nerve stimulation on motor performance in acute stroke: A behavioural and electrophysiological study

V. Sattler a, *, B. Ackel a, A. Gerdelat-Mas a, N. Raposo a, J.-F. Albucher b, C. Thalamas a, I. Loubinoux c, F. Chollet c, M. Simonetta-Moreau a

a Pôle neurosciences, neurologie, CHU Purpan, place du Dr-Baylac, TSA 40031, 31059 Toulouse cedex 9, France
b Pôle neurosciences, unité neurovasculaire, CHU Purpan, Toulouse cedex 9, France
c Centre d’investigation clinique, CHU Purpan, Toulouse cedex 9, France

*Corresponding author.
E-mail address: virginie.sattler@gmail.com.

Keywords: DCS; Stroke; Acute phase; Peripheral nerve stimulation; Rehabilitation; Cortical plasticity

Background and purpose. – Non-invasive neuromodulation such as repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) applied over the contralesional or ipsilesional motor cortices (M1), in association with neurorehabilitation, can improve motor recovery in patients after stroke [1–3]. Most studies have been performed in the chronic phase and very few in the acute one. The purpose of this study was to assess in the acute phase of post-stroke recovery the effect of anodal direct current stimulation (tDCS) applied over the ipsilesional primary motor cortex (M1) combined with repetitive peripheral nerve stimulation (rEPNS) on the motor performance of the paretic hand.

Methods. – In this double-blind, sham-controlled study, 20 patients are enrolled within the first month after a cortical or subcortical stroke and are randomized in two parallel groups. The first group receives five consecutive daily sessions of anodal tDCS over the ipsilesional M1 in association with rEPNS of the radial