Pathophysiology of RANK ligand (RANKL) and osteoprotegerin (OPG)

L.C. Hofbauer

Division of Gastroenterology and Endocrinology, Philipps-University, Marburg, Germany.

Reprint request: L.C. Hofbauer, MD, Division of Gastroenterology and Endocrinology, Zentrum für Innere Medizin, Philipps University, Baldingerstrasse, D-35033 Marburg, Germany.
e-mail: hofbauer@post.med.uni-marburg.de

CELL BIOLOGY

Receptor activator of nuclear factor-κB ligand (RANKL) is a membrane-bound peptide of the tumor necrosis factor (TNF) ligand superfamily [14]. Rich sources of RANKL expression include T lymphocytes [12] and osteoblastic lineage cells [8]. In the presence of permissive concentrations of macrophage-colony stimulating factor (M-CSF), RANKL stimulates the differentiation, proliferation, fusion and activation of osteoclastic lineage cells, resulting in an increased number of active osteoclasts and enhanced bone resorption [14, 22]. RANKL exerts its biological effects upon activating receptor activator of nuclear factor (NF)-κB (RANK), a transmembrane receptor of the TNF receptor (TNFR) superfamily which is mainly expressed by osteoclasts and dendritic cells [11].

Osteoprotegerin (OPG) represents a soluble receptor which belongs to the TNF receptor superfamily and acts as a receptor antagonist for RANKL [21]. OPG is ubiquitously produced by a variety of tissues, cell types, and cell lines, including mesenchymal stromal cells and osteoblasts. OPG binds both the soluble and cell-bound form of RANKL and, thus, prevents their interaction with, and stimulation, of RANK [14, 21]. Consistent with this, the in vitro effects of OPG include inhibition of osteoclast differentiation, survival, fusion, and activation of osteoclasts as well as stimulation of osteoclast apoptosis, thereby reducing the pool of active osteoclasts capable of resorbing bone [21].

Over the past years, it has become clear that RANKL and OPG are essential determinants of osteoclast cell biology and bone resorption [9, 22].

ANIMAL MODELS

In vivo, treatment of mice with RANKL activates osteoclasts, promotes bone loss and causes severe hypercalcemia [14], whereas RANKL deletion results in the absence of mature osteoclasts and subsequent development of osteopetrosis [13]. Deletion of RANK in mice generates a phenotype identical to that of RANKL-deficient animals [5]. Overexpression of OPG in mice or administration of OPG to normal rodents inhibits osteoclastogenesis, osteoclast activation and bone resorption, resulting in an osteopetrotic phenotype [21]. By contrast, OPG deletion was associated with enhanced osteoclastogenesis, increased bone resorption, and massive osteoporosis [16].

In various animal models of benign and malignant bone diseases, the administration of an OPG fusion protein or soluble RANK, both of which neutralize RANKL, was able to prevent bone resorption and to reduce bone loss. These models included bone loss associated with estrogen deficiency [21], inflammatory arthritis [12], periodontal infection [23], myeloma bone disease [4, 18], humoral hypercalcemia of malignancy [17], and bone metastases of various origin [10, 15, 24].

THE RANKL/OPG SYSTEM IN HUMAN BONE DISEASES

Abnormalities of the RANKL/OPG system have been detected in various human metabolic bone diseases. Several lines of evidence implicate the OPG/RANKL system in the pathogenesis of osteoporosis following estrogen deficiency: 17β-estradiol is able to enhance OPG production in human osteoblasts through stimulating osteoclast differentiation. Marrow stromal cells and lymphocytes from postmenopausal women display higher levels of RANKL expression than premenopausal women or postmenopausal women on estrogen replacement therapy [6]. In these women, RANKL expression is inversely correlated with serum levels of 17β-estradiol and positively with bone resorption markers. The role of serum levels of OPG and soluble RANKL and their association with meta-
THERAPEUTIC IMPLICATIONS OF RANKL BLOCKADE

Based on cell biology and animal studies, it was logical to assume that RANKL blockade is feasible in human bone diseases and prevents bone loss. Two small randomized controlled trials have evaluated the short-term effects of a single dose of OPG-Fc fusion protein on biochemical bone markers. In a study in women with postmenopausal osteoporosis over 12 weeks, OPG treatment resulted in a marked and sustained suppression of bone resorption and formation markers [1]. Another study compared the effects of a single dose of OPG vs. pamidronate in patients with myeloma bone disease and in women with skeletal metastases from breast cancer over 8 weeks [3]. Urinary excretion of the bone resorption marker N-telopeptide was reduced by treatment with OPG-Fc fusion protein by 74% (breast cancer) and 47% (myeloma) which was comparable to the pamidronate effects. These short-term trials were proof-of-principle that RANKL blockade is an efficient modality to treat human metabolic bone diseases characterized by enhanced bone resorption.

More recently, denosumab, a human monoclonal antibody against RANKL has been developed. Denosumab has several advantages over OPG fusion protein. It has a higher specificity for RANKL, a longer half-life, thus limiting its administration to subcutaneous injections every 6 months, and has not been found to induce auto-antibodies. Denosumab produced a rapid, profound, and sustained decline of bone turnover markers and an increase of bone mineral density in women with postmenopausal osteoporosis [2].

REFERENCES

1. Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Duns- 
tan CR. The effect of a single dose of osteoprotegerin in post-
placebo-controlled study of AMG 162, a fully human mono-
clonal antibody to RANKL, in postmenopausal women. J Bone 
AMGN-0007, a recombinant osteoprotegerin construct, in 
patients with multiple myeloma or breast carcinoma related 
4. Croucher PI, Shipman CM, Lippitt J et al. Osteoprotegerin inhi-
bits the development of osteolytic bone disease in multiple 
5. Dougall WC, Giaccum M, Charrier K et al. RANK is essential 
for osteoclast and lymph node development. Genes Dev 1999 ; 
Riggs BL. Role of RANK ligand in mediating increased bone 
resorption in early postmenopausal women. J Clin Invest 
2003 ; 111 : 1221-30.
7. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Mye-
loma cells induce imbalance in the osteoprotegerin/osteopro-
tegerin ligand system in the human bone marrow environment. 
8. Hofbauer LC, Gori F, Riggs BL. Stimulation of osteoprotegerin 
ligand and inhibition of osteoprotegerin production by 
glucocorticoids in human osteoblastic lineage cells: potential 
paracrine mechanisms of glucocorticoid-induced osteoporosis. 
9. Hofbauer LC, Schopfet M. Clinical implications of the osteo-
protegerin/RANKL/RANK system for bone and vascular 
bone cancer-induced skeletal destruction, skeletal pain and 
pain-related neurochemical reorganization of the spinal cord. 
11. Hsu H, Lacey DL, Dunstan CR et al. Tumor necrosis factor 
receptor family member RANK mediates osteoclast differen-
tiation and activation induced by osteoprotegerin ligand. Proc 
Natl Acad Sci (USA) 1999 ; 96 : 3540-5.
12. Kong YY, Yoshida H, Sarosi I et al. OPGL is a key regulator of 
osteoclastogenesis, lymphocyte development and lymph-node 
loss and joint destruction in adjuvant arthritis through osteo-


