L48. The challenges in assessing Takayasu arteritis

Standardised clinical assessments are central to progress in complex multi-system disease. Clinical improvement in small vessel systemic vasculitis (SVV) has come through more effective drug regimes adapted to disease severity. Methods to quantify disease activity, disease extent and damage, plus functional impairment have been developed and validated. These measurements have played a major role in the development of successful national/international networks which in SVV have provided sufficient patient numbers for RCT’s with secure statistical analysis. The first priority in new vasculitis is assessment of disease activity at 6/12[3]. However, the combined ITAS.A score, ITAS.2010 indicated satisfactory suppression of clinical disease activity at 6/12[3]. It remains unclear whether control of clinical evidence of disease activity at 6/12[3]. When assessing response to therapy in one large patient series, different immunosuppressive plus steroid regime[5]. The incomplete response to active induction therapy with persistent disease activity despite clinical improvement noted in ITAS.A score, despite showing an early response, indicated continued disease activity. This pattern was confirmed at a second centre using a different immunosuppressive plus steroid regime[5].

Disease extent

Initial consensus agreed an inclusive organ-based list of the main clinical features. The resultant disease-extent index (DEI.Tak) was used to analyse the disease pattern in two main Indian centres [1] and has since been used to characterise Turkish cases [2]. DEI.Tak has real value as a database in individual clinics and as an epidemiologic tool – but is not an activity index and it was important to develop one.

Disease activity

Analysis of serial DEI.Tak assessments from a single large clinic series allowed the selection of a set of items reflecting recent active disease to form a clinical activity score. The resultant Indian Takayasu Activity Score (ITAS2010) focuses on CVS items, with special emphasis on bruits, pulse loss, and claudication. It has been extensively validated and reproducibility in scoring five patients was excellent, with better inter-rater variability than for physicians global. Serial assessments showed that ITAS both reflects response to therapy and detects flares. All items scored in less than 5% of cases were omitted, so the slimmed down final ITAS2010 format contains 43 items in six organ-based systems [3]. It is convenient for physicians in the clinic and useful in therapy trials [4].

© 2019 Elsevier Masson SAS. Tous droits réservés. - Document téléchargé le 30/05/2019 Il est interdit et illégal de diffuser ce document.
and the evidence of active inflammation in biopsies from clinically inactive disease [7]. The apparent incomplete response to therapy despite clinical improvement has major implications for therapy. Persistent activity would predict development of damage and indeed significantly elevated TADS scores were documented. Further prospective studies are needed to evaluate whether this continues and to define the relationship of damage accumulation to the degree of initial activity and to the incomplete response.

Damage

Damage is a common feature of TA. Arterial stenosis is often the presentation and may require vascular interventions. The Takayasu Damage Score (TADS), containing 42 items in seven systems, was derived to capture this aspect by scoring only DEI. Tak features present for at least 6/12. TADS scores from one large cohort followed over two decades showed the increase in damage/scars over time related to disease duration and to features of poor outcome such as pulse loss [8]. One third of cases in that cohort underwent vascular interventions and 18% died during follow-up. TADS scores in fatal disease were higher than in non-fatal cases (7.4 vs 4.8). This shows that recording damage in TA captures clinically-relevant outcomes, including pulse loss, long-term stent patency and mortality. Extensive studies are now required to delineate the type and duration of therapy needed to block scar development in TA. This will also require detailed studies of the correlation between different imaging modalities and clinical assessments [9].

The worldwide challenge in treating TA is to provide an evidence-base for therapies. Standardised quantitative assessment adds strength to epidemiological studies and clinical practice but it is an essential part of clinical trial development, enabling the “treat to target” approach. We need to quantify the effects on disease activity and damage of both current recommended procedures and new therapies. IRAVAS work has established a sound basis for setting up prospective randomised controlled trials which will require collaborations between all specialties seeing TA. International integration of interested groups, particularly across Asia where the condition is more frequent, would greatly facilitate planning the series of RCT’s needed to bring the evidence-base for TA to the same standard as for SVV. Consistent use of standardised tools to assess long-term response to therapy should improve overall success rates in individual clinics.

Disclosure of interest: the authors declare that they have no conflicts of interest concerning this article.

References

Paul Bacon1, Ramnath Misra2

1University of Birmingham, Birmingham, UK

2Sanjiv Gandhi Postgraduate Institute of Medical Research, Lucknow, India

Correspondence: Paul Bacon, Birmingham University, Medical School (East Wing), Department of Rheumatology, Vincent Drive, Birmingham, B15 3QG, UK

p.a.bacon@bham.ac.uk

Available online 9 March 2013

© 2013 Published by Elsevier Masson SAS.

http://dx.doi.org/10.1016/j.lpm.2013.01.044

L49. Percutaneous interventions in Takayasu arteritis

A large proportion of Takayasu arteritis (TA) patients require invasive procedures to restore patency of stenosed/occluded vessels or to repair aneurysmal disease; this may be due to presentation in an advanced state of vascular disease, or due to failure of medical therapy to prevent progression of disease [1,2]. Vascular surgery (VS) has traditionally been the way to salvage these problems, and several published case series from around the world support its effectiveness [1,3–8]; commonly performed procedures include bypass surgery in various anatomic locations, aortic valve replacement and aneurysm repair. However, VS in TA has limitations: the associated morbidity and mortality is not inconsiderable; a significant proportion of patients require revision surgery to deal with graft occlusion, anastomotic aneurysms, or progression of