Patients.—Case notes from ninety-eight patients with Takayasu arteritis were reviewed retrospectively. Drug treatment, laboratory and imaging data were analysed, and disease activity further assessed using the Indian Takayasu arteritis (ITAS) and damage scores (TADs).

Results.—Nine patients were treated with biologics, all had previously received high dose prednisolone and ≥ 1 immunosuppressant drug, and five patients had failed cyclophosphamide. Three patients received more than one agent and eight remain on biologics. The patients prescribed biologics had more extensive arterial disease than the rest of the cohort (5–9 arteries involved, TADs 3–11), with active disease prior to the initiation of biologics (ITAS 2–9 and CRP 12–206 mg/L). The mean duration of treatment was 2.6 years, and one patient suffered a significant adverse event. Eight patients were prescribed anti-TNFα therapy, three anti-IL-6R blockade. One patient developed new arterial stenoses while receiving anti-TNFα and subsequently responded to tocilizumab. Two patients received the IL-6R antagonist as a first-line biologic. Biologic therapy resulted in a subsequently responded to tocilizumab. Two patients received the IL-6R antagonist as a first-line biologic. Biologic therapy resulted in a significant fall in CRP ($P < 0.01$) and prednisolone dose ($P < 0.01$). Likewise, ITAS fell from 4.1 to 1.4 ($P < 0.01$), and no significant progression in arterial injury was observed, either by non-invasive imaging or TADs.

Discussion.—Although anti-TNFα therapy is effective in refractory Takayasu’s, up to 30% do not respond or relapse. While tocilizumab offers an alternative in these cases, suppression of constitutional symptoms and CRP complicates disease monitoring, and regular imaging is required.

Conclusion.—In refractory Takayasu arteritis, TNFα and IL6R blockade proved an effective option. In light of their efficacy in cyclophosphamide non-responders, we propose to use biologics ahead of cyclophosphamide in these young patients.

http://dx.doi.org/10.1016/j.lpm.2013.02.065

A64 Assessment of patients with Takayasu’s arteritis in a routine clinical follow-up with Indian Takayasu Clinical Activity Score (ITAS2010)

F. Alibaz-Oner, H. Direskeneli
Marmara University, School of Medicine, Istanbul, Turkey

Introduction.—ITAS2010 is a new composite index developed to assess clinical activity in Takayasu’s arteritis (1AK), which is weighted for vascular items. We aimed to investigate the effectiveness of ITAS2010 in the routine clinical follow-up of 1AK.

Patients.—Patients ($n = 33$, mean age: 40.9 ± 12 years, F/M: 30/3) classified according to ACR criteria for 1AK were enrolled. ITAS2010 forms were filled cross-sectionally for baseline, two follow-ups prospectively, with intervals of at least 4–6 months, by including only new or worsening symptoms within the past 3 months.

Results.—ITAS2010 was similar at baseline for both active and inactive patient (12 (5–20) vs. 10 (0–19), respectively). There was no correlation between ITAS2010 and acute phase reactants (APRs). Similarly, change according to PGA was not reflected in ITAS in the second visit (1.15 (0–6) vs. 1.4 (0–3), respectively). Only three visit ITAS2010 score was observed to be significantly higher in active (1.62 (0–7)) patients compared to inactives (0.45 (0–3)) ($P = 0.001$). The total agreement between ITAS2010 and PGA was 60% (kappa: 0.096, $P = 0.43$) and between ITAS2010 and Kerr et al. [1] was 74% (kappa: 0.18, $P = 0.035$). The total agreement between PGA and Kerr et al. was 71% (kappa: 0.26, $P = 0.005$). Twelve patients were evaluated with imaging in the follow-up (four with PET, eight with MR-Angiography). When we added an extra-score on ITAS2010 for high APRs or positive imaging (vascular progression with radiology or increased uptake on vascular structures with PET), the total agreement between ITAS2010 and PGA increased to 74% (kappa: 0.499, $P < 0.001$), whereas ITAS2010 and Kerr et al. decreased to 51% (kappa: 0.102, $P = 0.06$).

Conclusion.—The agreement between PGA and ITAS2010 was observed to be limited. However, when we combined ITAS2010 with APR or imaging, our results improved. ITAS2010 had a significant discriminatory value according to disease activity in only the third visit in our routine follow-up. These results suggest that ITAS2010 may be valuable in the long-term follow-up, especially if combined with biomarkers and imaging.

Reference

http://dx.doi.org/10.1016/j.lpm.2013.02.066

A65 A randomized trial of mycophenolate mofetil versus cyclophosphamide for remission induction of ANCA-associated vasculitis: ‘MYCYC’. On behalf of the European vasculitis study group

R. Jones1, L. Harper2, J. Ballarin3, D. Blockmans4, P. Brogan5, A. Bruchfeld6, M. Gid7, K. Dahlsvik8, J. Dezoy9, P. Lanyon9, C.A. Poh10, V. Tesar11, A. Vaglio12, M. Walsh13, D. Walsh1, G. Walters1, D. Jayne1

1. Addenbrooke’s Hospital, Cambridge, United Kingdom
2. University of Birmingham, Birmingham, United Kingdom
3. Fundació Puigvert, Barcelona, Spain
4. University of Leuven, Leuven, Belgium
5. Great Ormond Street Hospital, London, United Kingdom
6. Karolinska University Hospital, Karolinska, Sweden
7. Hospital Clinic, Barcelona, Spain
8. Auckland City Hospital, Auckland, New Zealand
9. Nottingham University Hospital, Nottingham, United Kingdom
10. Royal Adelaide Hospital, Adelaide, Australia
11. Charles University, Prague, Czech Republic
12. University Hospital of Parma, Parma, Italy
13. McMaster University, Hamilton, Canada
14. Canberra Hospital, Canberra, Australia

Introduction.—Cyclophosphamide (CYC) induction regimens are standard therapy for ANCA-associated vasculitis (AAV) with major organ involvement. However CYC is associated with considerable toxicity. Mycophenolate mofetil (MMF) is a potential alternative to CYC. We performed an international, non-inferiority randomised trial comparing MMF to CYC for remission induction of AAV.

Patients.—Eligible patients had newly diagnosed AAV and were randomised to receive up to 6 months of induction with either MMF 2-3 g/day ($n = 70$) or 6–10 pulses of iV CYC 15 mg/kg ($n = 70$). Both groups received the same tapering oral prednisolone regimen and azathioprine maintenance therapy. The primary outcome was remission (absence of disease activity for ≥ 4 weeks while adhering to the glucocorticoid regimen). We hypothesized that MMF treatment would result in no more than 12% fewer remissions.

Results.—The groups were similar at trial entry. The primary remission endpoint occurred in 46/70 (66%) MMF vs. 48/70 (69%) CYC [risk difference (RD) − 3%, 90% CI −16 to 10%; $P = 0.06$ for non-inferiority]. Remission induction irrespective of steroid compliance occurred in 61/70 (87%) MMF vs. 54/70 (77%) CYC (RD 10%, 90% CI −1 to 21%; $P = 0.01$ for non-inferiority). However, glucocorticoid dosing did not differ significantly between groups overall ($P = 0.96$). Key safety out-
Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. A prospective study in 117 patients

Introduction.— Once ANCA-associated vasculitis (AAV) remission has been achieved with CS and cyclophosphamide (CYC), maintenance therapy usually relies on azathioprine (AZA) or methotrexate. However, 28-month relapse rate remains of 28%. Although rituximab (RTX) has been demonstrated to be as effective as CYC for induction of complete remission by 6 months, some studies showed that half of the patients did not achieve remission induction with MMF requires further study. Long-term safety outcomes and relapse data are required to fully understand the role of MMF as induction therapy for severe AAV.

Conclusion.— In the primary analysis we were unable to demonstrate that MMF is non-inferior to IV CYC for remission induction at six months in newly diagnosed AAV. How, glucocorticoid treatment affects remission induction with MMF requires further study. Longer term safety outcomes and relapse data are required to fully understand the role of MMF as induction therapy for severe AAV.

http://dx.doi.org/10.1016/j.lpm.2013.02.067

A66

Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. A prospective study in 117 patients

1. Hôpital Cochin, Université Paris-Descartes, Paris, France
2. Hôpital Georges-Pompidou, Université Paris-Descartes, Paris, France
3. Hôpital Louis-Proud, Université Lyon, Lyon, France
4. Hôpital Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
5. Hôpital Cochin, Université Paris Descartes, Paris, France
6. Hôpital Poinchaillou, Université de Rennes, Rennes, France
7. Hôpital Universitaire de Lyon, Lyon, France
8. Centre Hospitalier, Avignon, France
9. Centre Hospitalier, Valenciennes, France
10. Centre Hospitalier, Nîort, France
11. Centre Hospitalier, Vannes, France
12. Centre Hospitalier, Université de Grenoble, Grenoble, France
13. Hôpital Claude-Huriez, Université de Lille, Lille, France
14. Hôpital Henri-Mondor, Université de Paris, Créteil, France
15. Hôtel-Dieu, Université de Nantes, Nantes, France
16. Hôpital Universitaire, Dijon, Dijon, France
17. Hôtel-Dieu, Université Paris-Descartes, Paris, France

Conclusion.— In the primary analysis we were unable to demonstrate that MMF is non-inferior to IV CYC for remission induction at six months in newly diagnosed AAV. How, glucocorticoid treatment affects remission induction with MMF requires further study. Longer term safety outcomes and relapse data are required to fully understand the role of MMF as induction therapy for severe AAV.

http://dx.doi.org/10.1016/j.lpm.2013.02.068

A67

Treatment of systemic necrotizing vasculitides in patients ≥ 65 years old: Results of the multicenter randomized CORTAGE trial

1. Hôpital Bichat, Université Paris Descartes, Paris, France
2. CHR de Valenciennes, Valenciennes, France
3. Department of Nephrology and Internal Medicine, Hôpital Édouard-Herriot, Lyon, France
4. Epidemiology Hopital Hôtel-Dieu, Paris Descartes University, Paris, France
5. Department of Internal Medicine, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire de Tours, Tours, France
6. Department of Nephrology and Internal Medicine, Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
7. Department of Internal Medicine and Gerontology, Hôpital Universitaire Carémeau, Nîmes, France
8. Service de médecine interne générale, Hôpitaux universitaires de Genève, Geneva, Switzerland
9. National Referral Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
10. Hôpital Robert-Debré, Centre Hospitalier Universitaire de Reims, Reims, France
11. Department of Internal Medicine, Hôpital Bichat-Claude-Bernard, Paris, France
12. Department of Internal Medicine, Centre Hospitalier Bretagne Atlantique de Vannes, Vannes, France
13. Hôpital Cochin, AP-HP, Université Paris Descartes, Paris, France
14. Division of Internal Medicine, Centre Hospitalier Régional Universitaire de Caen, Côte-de-Nacre, Caen, France
15. Service de médecine interne, Centre de Référances des Vasculaires, Université Paris Descartes, AP-HP, Hôpital Cochin, 75005 Paris, France
16. Internal Medicine Cochin University Hospital, Paris, France

Conclusion.— Trial aim was to optimize the therapeutic strategy for patients ≥ 65 yo with SNV (PAN, GPA, MPA or EGPA). Patients.— Multicenter RCT on patients ≥ 65 yo with newly diagnosed SNV to compare conventional therapy (based on FFS; for all, ~ 28 mo of CS alone, combined with 500-mg/m2 CYC IV pulses every 2–3 wk