Subjects completed a questionnaire, which determined employment status and, in addition, assessed psychosocial factors (depression, fatigue, sleep, pain, coping). Concurrently, disease factors were recorded in the clinic (including BVAS, VDI, ANCA, co-morbidity, drugs and clinical phenotype). From the data of those subjects of working age, a multivariable model was developed using forward stepwise logistic regression to identify the independent associations of work disability, defined by those subjects reporting unemployment secondary to their health. Results are expressed as odds ratios (OR) and 95% confidence intervals.

Results—Of the 410 participants (86% response rate), 149 (36.3%) were employed (86 full time, 49 part time, 10 house persons, four students), 197 (48.0%) retired and 54 (13.2%) unemployed secondary to their health. Of those of working age, 25.9% were considered work disabled. Fatigue (OR 7.1, 1.5–33.1), depression (OR 4.4, 1.8–10.8), VDI > 4, (OR 3.9, 1.01–14.7) and being overweight (OR 3.4, 1.3–8.9) were independently associated with their unemployment.

Conclusion—A quarter of work aged AAV subjects reported unemployment as a result of their health and are characterised by high levels of fatigue, depression, disease damage and being overweight. However, it is unclear whether all these factors predict unemployment, or are consequences of it. Longitudinal studies are required to determine their causality.

http://dx.doi.org/10.1016/j.lpm.2013.02.223

P153
Long-term outcome of GPA and MPA in a population based cohort
R.A. Watts¹, J. Mooney¹, C. Mukhtyar², C. Sheehy², D.G.I. Scott³
1. University of East Anglia, Norwich Medical School, Norwich, United Kingdom
2. Norfolk and Norwich University Hospital, Department of Rheumatology, Norwich, United Kingdom
3. Norfolk and Norwich University Hospital, Norwich Medical School, University of East Anglia, Department of Rheumatology, Norwich, United Kingdom

Introduction—The outcome of GPA and MPA has dramatically improved since the introduction of steroids and cyclophosphamide, especially for patients entered into clinical trials such as EUVAS, but these may not be representative of the general population (trials will exclude early fatal cases for example) There is still a lack of long-term data on outcome, in particular mortality. We have maintained a prospective population register (NORVASC) of all patients with GPA and MPA since 1988. The aim of this study was to report the long-term mortality of GPA and MPA from our unselected well-defined population and to compare the periods 1988–1999 and 2000–2010. Treatment followed standards of care for the period, cyclophosphamide was mainly given IV.

Patients—Patients were prospectively entered into NORVASC, only patients from the denominator population were included. GPA or MPA were classified using the EMA algorithm. Survival was calculated patients from the denominator population were included. GPA or MPA were classified using the EMA algorithm. Survival was calculated using the Kaplan-Meier method and log rank for cohort comparisons.

Results—One hundred and eleven GPA (53 female) and 58 MPA patients (26 female) were included. Median age at diagnosis was GPA 60.1 y, MPA 69.2 y. Cumulative follow up was GPA 978 patient y and MPA 381 patient y. Median follow up GPA 7.4 y, MPA 5.0 y. Overall mean survival was 12.3 y (GPA 13.5 y; MPA 9.9 y; P = 0.011). Survival was better for GPA than MPA (P = 0.011) (table I). There was no difference in overall survival between genders but GPA males had a better survival than MPA males (P = 0.005). There was no difference in survival between the two decades (P = 0.471), GPA (P = 0.846) MPA (P = 0.179) but a trend for GPA to have better survival and than MPA. Increasing age at diagnosis was also associated with a worse prognosis.

Discussion—Overall survival is comparable to the EUVAS patients (88% 1 y and 78% 5 y survival). Current treatments appear to have had a modest effect on the mortality of MPA but not GPA.

Conclusion—AAV continues to have a significant long-term mortality in an unselected population.

Further reading

http://dx.doi.org/10.1016/j.lpm.2013.02.224

P154
ADAPTIV: A Delphi study to assess morbidity prevention and treatment in vasculitis
N. Brown¹, D. Tooth², A. Summers³, M. Venning¹
1. Central Manchester Foundation Trust, Manchester Royal Infirmary, Renal Research Labs, Manchester, United Kingdom
2. University of Manchester, Manchester, United Kingdom

Introduction—Vasculitis is a complex multi-system disorder that may be cared for in a variety of clinical settings. Increasing numbers of vasculitis patients are surviving the acute initial disease episode with adverse effects from disease damage and therapy creating challenges for the long-term management of this patient group. The objective of this Delphi study was to create guidelines for the holistic management of the vasculitis patient, incorporating the areas of: disease monitoring, cardiovascular disease, bone health, infection, malignancy and fertility.

Methods—On behalf of the UK Vasculitis Rare Disease Working Group, a 3 round Delphi study was carried out using the 7 comms Delphi software. The panel was comprised of experts from the field of vasculitis but also from the relevant areas outlined above. Panel members were invited to answer up to 27 questions covering the above areas of patient management. Responses created 275 statements to which participants were asked to rank their agreement/disagreement on a Likert scale. Statements reaching consensus (defined as 80% agreement) were considered for future guidelines.

Results—Seventy-one statements achieved consensus in round 2 and will be considered for inclusion in the Vasculitis RDWG guidelines (table I). The remainder of the statements will be discussed to achieve consensus.

Table I

<table>
<thead>
<tr>
<th></th>
<th>1 year (%)</th>
<th>5 years (%)</th>
<th>10 years (%)</th>
<th>15 years (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole cohort</td>
<td>89</td>
<td>74</td>
<td>54</td>
<td>39</td>
</tr>
<tr>
<td>CPA</td>
<td>91</td>
<td>80</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>MPA</td>
<td>88</td>
<td>62</td>
<td>32</td>
<td>27</td>
</tr>
<tr>
<td>1988 GPA+MPA</td>
<td>87</td>
<td>69</td>
<td>54</td>
<td>34</td>
</tr>
<tr>
<td>2000 GPA+MPA</td>
<td>93</td>
<td>78</td>
<td>48</td>
<td>–</td>
</tr>
<tr>
<td>1988 GPA</td>
<td>89</td>
<td>76</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>2000 GPA</td>
<td>92</td>
<td>84</td>
<td>59</td>
<td>–</td>
</tr>
<tr>
<td>1988 MPA</td>
<td>81</td>
<td>55</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>2000 MPA</td>
<td>93</td>
<td>68</td>
<td>40</td>
<td>–</td>
</tr>
</tbody>
</table>

http://dx.doi.org/10.1016/j.lpm.2013.02.224