severity of this fatigue, and its influence on patients’ well-being and psychological morbidity.

Patients.– We recruited 151 patients with AAV in remission for at least 6 months, 68 CKD disease controls, and 81 healthy controls to this cross-sectional observational study. Participants completed a questionnaire comprising the Multi-dimensional Fatigue Index (MF-20), and a number of other symptom rating scales including the Hospital Anxiety and Depression Scale (HADS).

Results.– The AAV group reported more severe ‘General Fatigue’ than the CKD group (mean score [with SE] 14.27 [0.355] vs. 12.87 [0.542], \(P = 0.021 \)), and similar scores across all the other dimensions of fatigue. Both disease groups reported more severe fatigue than the healthy group (7.71 [0.481] for ‘General Fatigue’, \(P < 0.001 \) multivariate across all dimensions of fatigue). Both disease groups also reported that fatigue is a major impairment to professional, family, and social life (\(P < 0.001 \) compared to healthy controls). Moreover, 27% of AAV patients had clinically significant anxiety and/or depression (scores of > 10 on the anxiety and/or depression subscales of the HADS); this was comparable to the values found in the CKD group, and three-fold higher than in the healthy group (\(P < 0.001 \)). Stepwise regression analysis showed that individual differences in fatigue explained differences in anxiety and depression, but not vice-versa, perhaps suggesting a causal association.

Discussion.– The severity of fatigue in AAV is comparable to that seen in CKD, chronic fatigue syndrome, Sjögren’s Syndrome and cancer, and is associated with major role impairments. High levels of anxiety and depression are also seen in this group, possibly secondary to fatigue.

Conclusion.– This data indicates the need for further research into the determinants and treatment of severe fatigue in AAV.

http://dx.doi.org/10.1016/j.lpm.2013.02.231

P162
Predicting renal relapse with the histopathologic classification of ANCA-associated glomerulonephritis

1. Leiden University Medical Center, Department of Pathology, Leiden, Netherlands
2. Erasmus Medical Center Rotterdam, Department of Cardio-Thoracic Surgery, Rotterdam, Netherlands
3. Skåne University Hospital Malmö, Department of Nephrology and Transplantation, Malmö, Sweden
4. Royal Berkshire Hospital, Department of Nephrology, Reading, United Kingdom
5. St. Joseph’s Hospital and McMaster University, Department of Clinical Epidemiology and Biostatistics, Hamilton, Canada
6. Leiden University Medical Center, Department of Medical Statistics and Bioinformatics, Leiden, Netherlands
7. Cardiology Center Netherlands, Department of Cardiology, Amsterdam, Netherlands
8. Addenbrooke’s Hospital, Vasculitis and Lupus Clinic, Cambridge, United Kingdom
10. Statens Seruminstitut, Copenhagen, Denmark
11. Necker Hospital, Department of Pathology, Paris, France
12. San Gerardo Hospital, Nephropathology Center, Monza, Italy
13. University of Heidelberg, Department of Pathology, Heidelberg, Germany
14. Imperial College London, Department of Medicine, London, United Kingdom
15. Meander Medical Center, Department of Nephrology, Amersfoort, Netherlands

Introduction.– Patients at high risk of relapse should be identified early to enable a clinical decision balancing adequate remission maintenance strategy with risk of treatment toxicity. We investigated if the histopathologic classification of ANCA-associated glomerulonephritis (AAGN) could independently predict renal relapse during long-term follow-up and aid in identifying patients at risk.