Methods.—Diagnostic renal biopsies (≥ 7 glomeruli) and clinical data of 135 patients with mild to severe AAGN from two multicenter European randomized clinical trials were included. Renal relapse was defined as new hematuria or proteinuria and/or a rise in serum creatinine of > 30% attributable to active AAGN. For the analysis 2 competing risk regression models were used to estimate the effect of baseline clinical and histopathologic characteristics on renal relapse. A competing risk analogue of a Cox proportional hazards model has been used. Competing risks are applied to situations where one or more competing events are possible. Both models treated end-stage renal failure and death as competing events. Model 1 included classification, age, creatinine and plasmapheresis. Model 2 included classification, creatinine, diagnosis and ANCA-type.

Results.— In both models the histopathologic classification was the only significant predictor for renal relapse: focal and crescentic class predicted lower risk for renal relapse compared to sclerotic class biopsies. Model 1: focal vs. sclerotic (sHR = 0.10, 95% CI 0.02–0.60, P = 0.011) and crescentic vs. sclerotic (sHR = 0.21, 95% CI 0.07–0.62, P = 0.004). Model 2: focal vs. sclerotic (sHR = 0.09, 95% CI 0.02–0.55, P = 0.009) and crescentic vs. sclerotic (sHR = 0.21, 95% CI 0.07–0.64, P = 0.006).

Discussion.— In this study, the histopathologic classification of AAGN was the only independent baseline predictor for renal relapse. The renal relapse risk increased with ascending class (focal – crescentic – sclerotic).

Conclusion.— The histopathologic classification of AAGN is predictive for renal relapse.

Further reading

http://dx.doi.org/10.1016/j.jpm.2013.02.233

P163
Antineutrophil cytoplasmic autoantibody-associated vasculitis (AAV) in older patients (REVAS Study)
R. Solans1, L. Caminal2, G. Fraile3, L. Saez4, J.J. Rios5, M. Monica6, X. Xavier7, M. Monica8, C.M. Jesus9

Introduction.— Differences in disease presentation and outcome of AAV between older and younger patients remain controversial. We conducted this study to analyze the clinical characteristics and outcome of patients aged over 65 yr at AAV diagnosis.

Methods.— We analyzed the demographic, clinical and laboratory features of 276 patients recruited in 16 Hospitals from Spain diagnosed from January 1995 to December 2011. Statistical analysis was performed using the SPSS vs. 17.

Results.— Two hundred and seventy-six patients were recruited: 118 GPA, 107 MPA and 51 EGPA. ANCA were positive in 85.9% of them (33.8% PR3-ANCA, 51.8% MPO-ANCA). Mean age at diagnosis was 55.8 ± 17.4 yr. Ninety-seven (35.1%) patients were older than 65 yr at AAV diagnosis. Clinical data at presentation and outcome by age, are listed in Table I. Diagnostic was confirmed by renal biopsy in 27.8% cases, lung biopsy in 18.6%, nerve biopsy in 14.1%, and ENT biopsy in 3.1%. All patients were treated with oral corticoids. CF was given to 38 patients intravenously and 37 orally. Dialysis was required in 21.6% cases and plasma exchange in 7.2%. 36 patients had bacterial infections and 12 opportunistic infections. Thirty-one patients died. MPO-ANCA, MPA and renal failure were significantly more frequent in older patients. There were no statistical differences related to treatment. Older patients had worse survival than younger (P = 0.001). Death was related to MPA (P = 0.003), severe renal failure (P < 0.000), and infections (P = 0.020).

Discussion.— We found some differences in the target antigens of serum ANCA and the spectrum of AAV between older and younger patients, being more prevalent MPO-ANCA and MPA in older. Renal involvement was the most common feature in older patients. Survival was poor in older patients due to severe renal failure and infections.

Conclusion.— MPA is the most prevalent AAV in older patients. Renal failure is the most common feature and is clearly related to a poor prognosis. We did not found a higher risk of infections in older patients.

Further readings

http://dx.doi.org/10.1016/j.jpm.2013.02.234