We report the case of a 80-year-old man treated with Dapsone (4,4'-diaminodiphenyl sulfone) for relapsing polychondritis. During the follow-up, diabetes mellitus appeared. Fasting glycemia remained high, but surprisingly HbA1c remained in the normal range. This unusual phenomenon is discussed.

CASE REPORT

A 80-year-old man was regularly surveyed in our service since 1987 for a relapsing polychondritis and treated with Dapsone, 100 mg per day, with a good outcome on chondritis.

During the follow-up, a prostate carcinoma was diagnosed in 1990 and treated with surgery and brachytherapy. An *in situ* bladder carcinoma was treated in 1997 with BCG therapy. Both carcinomas were regularly surveyed and remained controlled: PSA was < 0.5 ng/mL (N < 4), periodic bladder cytologies showed no malignant cells.

Biological survey showed a normal red blood cell count with a mild hemolysis [bilirubin = 35 mMol/L (0 < N < 17), LDH = 350 UI/L (150 < N < 320) and reticulocytosis 155 x 10⁹/L] due to a chronic Dapsone-induced methemoglobinemia which was evaluated around 2%.

In 1999, fasting glycemia was controlled several times around 1.3 g/L (7.4 mMol/L) checked on 100 UI/mL and 30 UI/mL lithium heparinate test-tubes. Fasting insulinemia was normal at 6 mMol/L (4 < N < 6) and HbA₁c was in the normal range: 4.2% (N < 6.5%). Proteinuria was about 0.23 g/24 h and albuminuria around 58 mg/24 h (microalbuminuria). Diet was proposed and compliance was good during two years.

At the last visit in January 2002, he complained of polydypsia, polyuria and weight loss. Fasting glycemia was 1.7 g/L (9.5 mMol/L). Several fasting glycemia were controlled per 24 hours. At 7 AM fasting glycemia was 1.93 g/L (10.7 mMol/L). At 10 AM 2.07 g/L (11.5 mMol/L). At 15 PM fasting glycemia was 2.52 g/L (14 mMol/L). At18 PM fasting glycemia was 2.07 g/L (11.5 mMol/L). Glycated hemoglobin (HbA₁c) was still normal: 4%. Insulinemia and plasma level of peptide C were also normal. Faced with such features, antidiabetic treatment with acarbose (Gluco*) was begun with a good outcome on clinical symptoms and glycemia. Since then, evaluation of long-standing glycemic control was based on fructosamine concentration and remained correct.

DISCUSSION

In our case, Dapsone (4,4'-diaminodiphenyl sulfone), an anti mycobacterium leprae and immunomodulatory agent was used to control a relapsing polychondritis with a good outcome on inflammation in an 80-year-old patient. Treatment tolerance was acceptable with a low level of dapsone-induced methemoglobinemia and hemolysis. During the follow-up, diabetes mellitus appeared. Fasting glycemia was controlled several times with different methods and remained high, since surprisingly HbA₁c remained in the normal range.

Methemoglobin is hemoglobin in which the iron has been oxidized (α²⁺ β²⁺). This oxidized hemoglobin is no longer capable of reversibly binding oxygen and may be induced by dapsone treatment.
Four minor fractions of HbA called HbA$_{1a1}$, HbA$_{1a2}$, HbA$_{1b}$, and HbA$_{1c}$ have been separated by Allen, using red cell hemolysat chromatography [1]. HbA$_{1c}$ may represent 5% of the total hemoglobin. These hemoglobins are progressively produced in circulating red blood cells during their 120 days life span. HbA$_{1a1}$ and HbA$_{1a2}$ respectively contain fructose 1-6 bisphosphate and glucose-6 phosphate fixed on N-terminal valin of beta chain. HbA$_{1c}$ contains glucose fixed in the same way. This fixation between reductive function in 1 of glucose and the NH2 of valin requires Amadori rearrangement [1]. It is non-enzymatic and irreversible. Glucose level increases with red blood cell aging and is proportional to glucose concentration. In diabetes mellitus, HbA$_{1c}$ may rise until 15% and evaluation of this glycated hemoglobin is used to evaluate long-standing glycemic control as recommended by Diabetes Consensus Development Conference [2]. As red cell life time is about 120 days, HbA$_{1c}$ reflects the glycemic state of the past three months. Responsiveness of dapsone in lowering HbA$_{1c}$ percentage has been shown in NOD mice [3]. Such an effect on HbA$_{1c}$ can be secondary to hemolysis induced by N-hydroxy metabolites of dapsone responsive of hemolytic activity of dapsone [4] as in our observation. Thus dapsone affects the life span of erythrocytes and HbA$_{1c}$ level. The fall in HbA$_{1c}$ concentration is explained by increased erythrocytopoiesis as a product of drug-induced hemolysis [5]. Plasma fructosamine concentration is another method for evaluating intermediate-standing glycemic control and is not affected by hemolysis. So our case recalls that in patients presenting chronic hemolysis such as those treated with Dapsone, HbA$_{1c}$ evaluation gives false low level and fructosamine evaluation may be preferred to estimate glycemic control.

REFERENCES

5. Tack CJ, Wetzelz JF. Decreased HbA$_{1c}$ levels due to sulfonamide-induced hemolysis in two IDDM patients. Diabetes Care, 1996, 19, 775-776.