The effects of respiratory muscle training on improvement of the internal and external thoraco-pulmonary respiratory mechanism in COPD patients

Effet de l’entraînement des muscles respiratoires sur l’amélioration des paramètres de la mécanique thoraco-pulmonaire interne et externe chez les malades BPCO

R. Tout a, L. Tayara b, M. Halimi a, * a Institut de physiothérapie, université Saint-Joseph, URAF, rue de Damas, Beyrouth, Lebanon
b Faculté des sciences infirmières, université Saint-Joseph, rue de Damas, Beyrouth, Lebanon

Received 9 January 2012; accepted 31 January 2013

Abstract

Introduction. – Chronic obstructive pulmonary disease (COPD) is a severe, incapacitating pathology. Inspiratory and/or expiratory muscle training may favorably impact the indicators of both specific and general improvement with regard to this disease. We are hypothesizing that when combined with bronchial decluttering, this training will have a beneficial effect on lung function and quality of life in these patients.

Method. – Forty COPD subjects classified Gold I and Gold II and aged 60.38 ± 8.02 years were divided into four groups of 10. Three of the groups were trained with the help of Threshold® tools used for (1) inspiratory, (2) expiratory and (3) inspiratory and expiratory purposes; their training supplemented the decluttering and lower limb muscle exercise that the 4th group concurrently received. The patients underwent 16 rehabilitation sessions over an 8-week period. The variables consisted in: (1) forced expiratory volume in 1 s (FEV1) and spirometrically measured peak expiratory and inspiratory flow rates (PEFR and PIFR), (2) fatigability, dyspnea, heart rate and walking distance evaluated during the 6-minute walk test; (3) maximum inspiratory pressure and (4) maximum expiratory pressure as assessed by the Threshold® tools and (5) the signs of quality of life in terms of the Saint-George’s respiratory questionnaire (SGRQ) score.

Results. – Only in group 1, there was significant improvement with regard to FEV1 and PEFR. There was no PIFR modification in any of the groups. On the other hand, signs of quality of life scores along with dyspnea, fatigability and heart rate showed significant improvement in the three experimental groups, and significant improvement in maximum inspiratory pressure was observed in groups 1 and 3.

Discussion. – When associated with decluttering techniques, diaphragmatic rehabilitation and lower limb muscle exercise along with psychological support and educational efforts, respiratory muscle training is beneficial when compared with the usual protocols in rehabilitation of COPD patients.

© 2013 Elsevier Masson SAS. All rights reserved.

Keywords: COPD; Respiratory muscle training; Threshold®

Résumé

Introduction. – La broncho-pneumopathie chronique obstructive (BPCO) est une maladie incapacitante. L’entraînement des muscles inspiratoires et/ou expiratoires pourrait avoir des effets bénéfiques sur les indicateurs d’amélioration spécifique et générale de cette maladie. Nous supposons que cet entraînement, associé au désencombrement, aura un effet bénéfique supplémentaire sur la fonction pulmonaire et la qualité de vie de ces patients.

Méthode. – Quarante sujets BPCO (classés grades I et II selon Gold), âgés de 60.38 ± 8.02 ans, ont été divisés en quatre groupes de dix sujets chacun. Trois groupes ont été entraînés à l’aide des outils Threshold® selon trois modalités en plus des techniques de désencombrement et de l’entraînement des muscles des membres inférieurs que le quatrième groupe a reçu : (1) inspiratoires, (2) expiratoires, (3) inspiratoires et expiratoires. Les patients ont bénéficié de 16 séances de rééducation sur huit semaines. Les variables ont été : (1) le volume expiratoire maximal à la première seconde (VEMS), les débits expiratoire et inspiratoires de pointe (DEP et le DIP), (2) la fatigabilité, la dyspnée, la fréquence cardiaque.

* Corresponding author.
E-mail address: rolatout@yahoo.com (R. Tout), mohamad.halimi@usj.edu.lb, mhalimi@yahoo.com (M. Halimi).
et la distance de marche évaluée lors du test de six minutes de marche, (3) la pression inspiratoire maximale, (4) et la pression expiratoire maximale évaluée par les outils Threshold®, et (5) les signes de la qualité de vie évalués par le score du questionnaire de Saint-Georges (QSG).

Résultats. – Il y a une amélioration significative de la mesure du VEMS et du DEP du groupe 1 uniquement. Les DIP de tous les groupes n’ont pas été modifiés. Les signes de la qualité de vie, la dyspnée, la fatigabilité et la fréquence cardiaque ont présenté des améliorations significatives pour les trois groupes. Une amélioration significative de la pression inspiratoire maximale est notée chez les groupes 1 et 3.

Discussion. – L’entraînement des muscles respiratoires associé aux techniques de déshoncement, de rééducation diaphragmatique, de l’entraînement des muscles des MI, du soutien psychologique et de l’éducation des patients se révèlent bénéfique dans la réadaptation des patients BPCO relativement aux protocoles habituels.

© 2013 Elsevier Masson SAS. Tous droits réservés.

Mots clés : BPCO ; Entraînement des muscles respiratoires ; Threshold®

1. English version

1.1. Introduction

Chronic obstructive pulmonary disease (CPOD) affects persons over 40 years of age who are smokers or exposed to smoke. Following myocardial infarction, strokes, community-acquired respiratory infections and tuberculosis, it represents the 5th cause of death in the world. The World Health Organization (WHO) has hypothesized that by 2020, CPOD mortality shall have doubled with regard to 1990 on account of increased smoking, its main cause, particularly in women [31].

Initially and lengthily virtually asymptomatic, CPOD is first manifested by coughing and expectoration in the morning, which are followed by dyspnea on exertion and subsequently at rest, and it may finally limit daily activities and constitute a sizable handicap prior to becoming life-threatening.

This disease necessitates targeted prevention, early diagnosis and appropriate care built essentially around respiratory rehabilitation. The results of a number of meta-analyses [16,19,24] confirm with a high level of evidence that when applied to CPOD subjects, rehabilitation (bronchial decluttering, reeducation and exercise of the lower limb muscles) engenders improvement in terms of dyspnea, exercise tolerance and quality of life. By diminishing the frequency and duration of hospitalization it reduces the costs associated with the latter.

Three main criteria help to assess functional capacity deterioration in the CPOD patient: lower forced expiratory volume in 1 second (FEV1), diminished quality of life, and the rate of mortality [14,28]. Indeed, evolution of the disease leads to a severe decline in quality of life [12].

1.1.1. The inspiratory muscles

As expiration ends, persisting air entrapment in a patient’s lungs creates positive end – expiratory pressure. This pressure compels the diaphragm at the beginning of its labors to carry out a major inspiratory effort in order to generate an inspiratory flow sufficient first to vanquish the positive pressure, and then to create the negative pressure that will provoke a flow of air into the lungs [14].

A large proportion of the energy that would normally be supplied by the diaphragm is expended in this laborious effort, which diminishes the volume of the respiratory reserve that can no longer easily meet the respiratory demand manifested during the patient’s struggles [32]. His labors lead to the arrival of thoraco-pulmonary distension along with a tendency towards a flattening of diaphragmatic muscle fibers placing them in mechanically unfavorable conditions. More particularly, the diaphragmatic cupolas are lowered and flattened. As their contractile fibers are shortened, they become functionally insufficient. As a result, the inspiratory action of the diaphragm is weakened, and the accessory inspiratory muscles are solicited [4].

In order to adapt to these modifications, the diaphragm undergoes a diminishment in the number and length of its sarcomeres so as to recreate a more workable length-tension relationship at the level of the previously mentioned fibers [18]. The strength produced by the new length is equal to that which had been produced by the old length. The peak inspiratory flow rate (PIFR) may thereby be conserved in many patients. On the other hand, ventilation takes place at a threshold level likely to lead to muscle fatigue. Type IIA diaphragmatic muscle fibers, which are less prone to fatigue, will tend to grow [3]. The diaphragm’s aerobic capacities will likewise grow through increased capillarisation and more mitochondria [18].

As the disease evolves, the new length-tension relationship no longer allows the diaphragm to generate optimal strength when it contracts. As it labors, it approaches its maximum shortening capacity; as a result, its workload increases, as does its oxygen consumption, which becomes six times as great as that observed in normal subjects [24]. As the disease worsens, it can no longer meet the heightened demand for oxygen, which is likewise augmented by the solicitation of accessory respiratory muscles [9,13], which appears to conserve their strength and endurance. All told, these different modifications of ventilatory mechanics lead to lowered inspiratory efficiency [23].

This evolution justifies today’s consensus according to which the decompensation undergone by the CPOD patient is largely due to muscle fatigue in the diaphragm and among the other respiratory muscles [26].

1.1.2. The expiratory muscles

Even though the abdominal muscles in humans appear to preserve their strength, their endurance is likely to diminish [1,35].

1.1.3. Flow-volume curve

The obstructive syndrome is accompanied by reduced respiratory flow even though volume remains the same or is
only slightly modified. FEV1, the Tiffeneau ratio (FEV1/forced vital capacity) and the peak expiratory flow rate (PEFR) are all diminished.

Due to the pathological conditions, the smaller bronchi are partially obstructed. The flow-volume curve or loop is typically concave towards the top, and its shape translates the normal expiratory velocity of the air in the large respiratory airways, and the reduced velocity in the smaller airways, which is due to their being partially obstructed (Fig. 1).

Disease evolution is marked by increasing obstruction of the lower and smaller respiratory airways and by the irreversibility of the process [21].

Early therapeutic intervention during the Gold I and Gold II stages (Table 1) is likely to be relatively efficient with regard to FEV1 decrease and quality of life, but relatively inefficient in terms of survival (Fig. 2).

Later therapeutic intervention (Gold II and Gold III stages), once the obstruction would appear to be less reversible, will have more limited therapeutic efficiency, particularly with regard to FEV1 decrease. On the other hand, it may have a more pronounced effect on exacerbations and mortality. At these stages of disease evolution, comorbidities weigh heavily, and a global, integrated approach is consequently justified [11].

1.1.4. Rehabilitative care

From the standpoint of a rehabilitation technician, appropriate treatment of the respiratory symptoms linked with COPD (or with exacerbation of the latter) includes:

- bronchial decluttering meant to clear the airways;
- diaphragmatic rehabilitation (solicitation of the physiological diaphragmatic contraction) aimed at improved stamina;
- reinforcing of the lower limb muscles so as to limit functional deconditioning;
- psychological support and therapeutic education.

Weakened respiratory muscles and/or altered diaphragmatic mechanics may render the respiratory difficulty a key element in the clinical picture. Dyspnea and intolerance to physical exertion further worsen the quality of life [21].

While it appears that targeted training of the inspiratory muscles with specific loading (hand-held devices) may significantly augment their strength and endurance [7,15], the effects of this type of training on the other parameters have yet to be assessed. This situation has led us to implement a protocol aimed at reinforcing the respiratory muscles in conjunction with the application of bronchial decluttering techniques (accelerated expiratory flow and diaphragmatic rehabilitation). We have attempted to assess its effects as concerns:

- increased functional capacities of these muscles;
- mechanically improved diaphragmatic conditions;
- increased capacity for physical exertion.

Table 1

<table>
<thead>
<tr>
<th>Stages</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 At risk</td>
<td>Chronic symptoms: coughing, expectoration</td>
</tr>
<tr>
<td>I Non-severe COPD</td>
<td>FEV1/VC < 70%</td>
</tr>
<tr>
<td>II Moderately severe COPD</td>
<td>30% < FEV1 < 80% of the predicted figure</td>
</tr>
<tr>
<td>IIa</td>
<td>50% < FEV1 < 80% of the predicted figure</td>
</tr>
<tr>
<td>IIb</td>
<td>30% < FEV1 < 50% of the predicted figure</td>
</tr>
<tr>
<td>III Severe COPD</td>
<td>FEV1/VC < 70%</td>
</tr>
<tr>
<td></td>
<td>FEV1 < 30% of the predicted figure or FEV1 < 50% of the predicted figure with chronic respiratory insufficiency (PaO2 < 60 mm Hg)</td>
</tr>
</tbody>
</table>

FEV1: forced expiratory volume/second; VC: vital capacity.
Our hypothesis is that this type of training will facilitate:

- improved functioning of internal mechanics through ameliorated elastic behavior of the lungs;
- increased chest expansion through heightened enablement of the respiratory muscles;
- improved mechanical performance of the diaphragm;
- diminished dyspnea;
- improvement pertaining to the quality of life signs listed in Saint-George’s respiratory questionnaire (SGRQ).

Our hypothesis is that these improvements would be greater than those objectified when bronchial decluttering and diaphragmatic rehabilitation techniques are applied alone.

1.2. Population and methods

1.2.1. Population

Our prospective study was carried out over a period of 7 months. The subjects were selected subsequent to a survey conducted in a population of active and passive smokers and ex-smokers. Spirometric tests were proposed to patients presenting with clinical signs of COPD (coughing, dyspnea, expectorations) so as to validate or invalidate the clinical picture. The patients diagnosed as “COPD subjects” were divided into four different groups by assigning them, in the order of consultation and one by one, to groups 1 through 4. Patients were selected in accordance with the following inclusion criteria:

- cooperating COPD subjects;
- diagnosed clinically and through spirometric measurement (grades I and II in the Gold classification);
- presenting with 50% < FEV1 < 80% of predicted or theoretical value in the spirometric test;
- presenting with an improvement < 15% of the FEV1 following use of bronchodilators;
- from 45 to 75 years of age;
- of either sex.

Inclusion criteria were:

- heart failure or associated cardiac pathology;
- previous pulmonary or cardiac surgery;
- patient depending on oxygen therapy or undergoing cortisone treatment;
- associated neuromuscular pathologies.

The groups participating in the study were defined as follows (Fig. 3):

- group 1 (inspiratory);
- group 2 (expiratory);
- group 3 (inspiratory and expiratory);
- group 4 (controls).

- Population: 40 COPD subjects.
- Experimental groups; control group.
- Group 1, 10 COPD subjects, respiratory physiotherapy and inspiratory muscle exercise (Threshold6 IMT).
- Group 2, 10 COPD subjects, respiratory physiotherapy and expiratory muscle exercise (Threshold6 PEP).
- Group 3, 10 COPD subjects, respiratory physiotherapy and inspiratory and expiratory muscle exercise (Threshold6 IMT and PEP).
- Group 4, 10 COPD subjects, respiratory physiotherapy.

Our variables comprised:

- FEV1, PEFR and peak instantaneous inspiratory flow rate (PIIFR) evaluated by spirometric measurement;
- quality of life signs evaluated by SGRQ and its secondary criteria (symptoms, repercussions on physical activity, impact on daily life);
- the distance covered during the 6-minute walking test;
- heart rate (HR) at rest, evaluated by a blood pressure monitor;
- dyspnea evaluated by the Sadoul scale;
• lower limb fatigue evaluated by the Visual Analog Fatigue Scale (VAFS);
• costo-diaphragmatic recess evaluated by frontal chest radiograph;
• strength developed by the inspiratory and expiratory muscles through Threshold™ measurement of maximum inspiratory (IP_max) and expiratory (EP_max) pressure.

1.2.2. Protocols
Sixteen rehabilitation sessions were carried out by each patient at a frequency of two sessions a week over the course of 8 weeks. The 1st and the 16th sessions were reserved for application of the different measurements and evaluations.

1.2.2.1. Evaluation protocol. It includes:

• measurement of the spirometric volumes according to the following three terms:
 ○ maximum FEV1 (mFEV1),
 ○ the PEFR reached in forced expiration initiated with maximum inspiration,
 ○ the PIFR reached during a forced inspiratory vital capacity maneuver (FIVC) [29];
• assessment of the patient’s quality of life was carried out with SGRQ, which is an instrument expressly addressed to patients suffering from respiratory pathology. It includes 50 questions covering three dimensions: (1) symptoms, (2) repercussions on physical activity, (3) impact on daily life. The overall score summarizes the information taken as a whole. It ranges from 0 (the best) to 100 (the worst). The questionnaire dealt with the 2 most recent months, rather than the 12 months covered in the original version;
• evaluation of the distance (in meters) covered by the patient in 6 minutes [5]. Once completed, this test allows for assessment of:
 ○ the heart rate as measured by a heart rate monitor,
 ○ the pauses during the test are counted,
 ○ the fatigue of the lower limb muscles is based upon what the patients feels during the test and is measured in terms of the VAFS, which is a scale ranging from 0 (no tiredness) to 10 (intolerable tiredness necessitating rest and cessation of walking);
• dyspnea is evaluated by the therapist according to what the patient feels during the test. It ranges from 0 to 4 on the Sadoul scale. Any diminution in the degree of dyspnea tends toward “0” and denotes improved functioning of the subject’s respiratory tract [5];
• evaluation of maximal respiratory pressure is carried out in a seated position. The subject is provided with a nose clip. We carried out three measurements and retained the most favorable:
 ○ maximal inspiratory pressure (IP_max as evaluated by Threshold™ IMT): the patient must carry out maximal forced inspiration following maximal expiration,
 ○ maximal expiratory pressure (EP_max as evaluated by Threshold™ PEP): the patient must carry out a “quick and strong” expiration following deep inhalation,

○ any increase in IP_max and EP_max denotes improved strength of the subject’s inspiratory and expiratory muscles;
• pre-test/post-test comparison of the lower costo-diaphragmatic recess of the diaphragmatic cupola on a frontal chest radiograph in a standing position (with deep inhalation) (Fig. 4).

1.2.2.2. Measurement apparatuses. The EasyOne™ spirometer measures the flow of air entering into and exiting out of the patient’s lungs.
The Threshold® IMT (Fig. 5) is a tool helping to train the inspiratory muscles with a pressure load representing a fraction of the patient’s P_{max} [7].

The Threshold® PEP (Fig. 6) is a tool used in expiratory rehabilitation by positive expiratory pressure, and it is equipped with a one-way valve functioning independently from the patient’s respiratory flow.

Pressure is adjustable and ranges from 4 cm H$_2$O to 20 cm H$_2$O. When the strength of the expiratory muscles is measured, it becomes possible to calculate P_{max}.

The heart rate monitor automatically displays a heart rate reading.

The VAFS allows the patient to self-evaluate the fatigue experienced at the level of the lower limbs on a scale graded from 0 (no tiredness) to 10 (intolerable tiredness necessitating rest).

The SGRQ allows for assessment of the quality of life parameters.

The Sadoul scale classifies patients in terms of the stages of their pathology, which are graded from 0 (no dyspnea) to 4 (dyspnea accompanying even the slightest effort).

A simple goniometer with plastic arms enabled us to measure the costo-diaphragmatic recess on the frontal lung X-ray taken during maximal inspiration.

1.2.2.3. Experimental protocols. All of the patients participating in our study benefited from a rehabilitation program (group 4 protocol or control group protocol) involving:

- decluttering, or bronchial clearance, by means of Expiratory Flow Acceleration (EFA) or total slow expiration with glottis opened in lateral posture (ELTGOL);
- diaphragmatic rehabilitation led to awareness of increased abdominal volume during inspiration and a widening of the abdomen during expiration in the different positions at rest (seated, half-seated or standing) or involving effort (walking, toilet, stairs…) [8];
- training the lower limb muscles: active flexion/extension exercises (bicycle) and stamina or endurance exercises (treadmill);
- psychological support program (cognitive-behavioral therapy techniques) aimed at diminishing the possible psychological pain experienced by patients and their friends and family;
- targeted education devoted especially to cessation of smoking and avoidance of polluting factors (second-hand smoking, industrial contaminants).

In addition to this protocol, the three experimental groups benefited from the following supplementary respiratory exercise protocols:

- group 1 (inspiratory) benefited from a rehabilitation protocol involving the inspiratory muscles, utilizing Threshold® IMT, and consisting in eight to 10 2-minute cycles;
- group 2 (expiratory) benefited from a rehabilitation protocol involving the expiratory muscles, utilizing Threshold® PEP, and consisting in eight to 10 2-minute cycles;
- group 3 (inspiratory and expiratory) benefited from a rehabilitation protocol involving the inspiratory muscles (Threshold® IMT) and the expiratory muscles (Threshold® PEP) and consisting in four or five 2-minute cycles devoted to each.

In order to proceed, an initial assessment of these groups was carried out by measuring “P_{max}” and “P_{PEF}” for each patient. The respiratory pressure load employed at the outset of the sessions represented 30% of each of the two parameters (P_{max} and P_{PEF}). The pressure load was gradually raised to 60% of these parameters as the strength of the patient’s inspiratory and/or expiratory muscles increased. Exercise duration for each group went up little by little, and reached 20 to 30 minutes.

We utilized the statistical software XIstat 2009. Comparisons of means were carried out by a Student’s t test. We set the significance threshold at $P < 0.05$.

1.3. Results

1.3.1. Synoptic patient data

Forty COPD subjects participated in this study. The participants were women (52.5%, $n = 21$) and men (47.5%, $n = 19$). Their average age was 60.38 ± 8.02 years (45, 75). Twenty-seven subjects (70%) were smokers, eight subjects (20%) had stopped smoking over the past 6 months, and five subjects (8%) were non-smokers. The Body Mass Index (BMI) of these patients was 28.3 ± 3.11 kg/m2 [22.2, 36.7].

1.3.2. Spirometric measurements

Table 2 shows significant FEV1 and PEF improvement in group 1 alone. In none of our four groups was the PIFR modified.
Table 2
Evolution of the different spirometric measurements (FEV1, PEFR, PIFR) in our four experimental groups (Group 1, Group 2, Group 3, Group 4).

<table>
<thead>
<tr>
<th>Spirometric measurements</th>
<th>Group 1</th>
<th></th>
<th>Group 2</th>
<th></th>
<th>Group 3</th>
<th></th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-test Post-test</td>
<td>P</td>
<td>Pre-test Post-test</td>
<td>P</td>
<td>Pre-test Post-test</td>
<td>P</td>
<td>Pre-test Post-test</td>
</tr>
<tr>
<td>FEV1</td>
<td>0.93 ± 0.39 1.44 ± 0.57</td>
<td>0.03</td>
<td>0.86 ± 0.44 0.04 ± 0.36</td>
<td>> 0.05</td>
<td>1.06 ± 0.55 1.06 ± 0.47</td>
<td>> 0.05</td>
<td>0.98 ± 0.32 0.9 ± 0.47</td>
</tr>
<tr>
<td>PEFR</td>
<td>0.57 ± 0.14 0.76 ± 0.16</td>
<td>0.01</td>
<td>0.98 ± 0.45 1.25 ± 0.56</td>
<td>> 0.05</td>
<td>1.33 ± 0.71 1.44 ± 0.65</td>
<td>> 0.05</td>
<td>1.27 ± 0.44 1.15 ± 0.59</td>
</tr>
<tr>
<td>PIFR</td>
<td>1.5 ± 0.72 1.79 ± 0.76</td>
<td>> 0.05</td>
<td>1.13 ± 0.82 1.27 ± 0.46</td>
<td>> 0.05</td>
<td>1.43 ± 0.8 1.36 ± 0.56</td>
<td>> 0.05</td>
<td>1.57 ± 0.66 1.39 ± 0.58</td>
</tr>
</tbody>
</table>

Table 3
Evolution of the different Saint-George’s respiratory questionnaire (SGRQ) parameters on our four experimental groups.

Saint-George’s respiratory questionnaire	Group 1		Group 2		Group 3		Group 4	
	Pre-test Post-test	P						
Symptoms	41.68 ± 8.73 31.23 ± 7.93	0.013	41.05 ± 7.7 31.67 ± 8.16	0.015	39.04 ± 8.69 34.16 ± 8.5	0.01	43.3 ± 8.73 35.5 ± 7.88	> 0.05
Activity	20.06 ± 2.45 17.11 ± 2.45	0.014	21.02 ± 2.45 16.98 ± 2.27	0.009	20.05 ± 2.38 17.18 ± 2.43	0.01	20.09 ± 2.45 16.98 ± 2.27	0.016
Impact on daily life	40.75 ± 7.7 31.23 ± 8.16	0.015	40.99 ± 8.73 34.65 ± 8.12	> 0.05	31.23 ± 8.16 28.14 ± 8.5	> 0.05	37.77 ± 7.39 32.1 ± 6.75	> 0.05
Total	34.16 ± 7.09 25.92 ± 6.12	0.012	36.31 ± 6.9 29.34 ± 7.35	0.04	33.35 ± 5.28 27.19 ± 5.4	0.02	35.38 ± 4.72 28.13 ± 5.71	0.029

Table 4
Evolution of the different parameters evaluated during the 6-minute walking test in our four experimental groups (Walking distance (m), Heart rate (bpm), Dyspnea, Im fatigue).

6-minute walking test	Group 1		Group 2		Group 3		Group 4	
	Pre-test Post-test	P						
Walking distance (m)	383 ± 27.1 413.5 ± 5.61	0.019	381 ± 45.57 405 ± 37.19	> 0.05	368 ± 70.05 389 ± 63.85	> 0.05	356 ± 47.66 388.5 ± 49.78	> 0.05
Heart rate (bpm)	87.4 ± 8.4 85.5 ± 4.4	0.001	90.7 ± 7.47 85.5 ± 4.4	> 0.05	88.3 ± 9.92 87.8 ± 9.3	> 0.05	85.9 ± 8.13 86.2 ± 7.79	> 0.05
Dyspnea	3.1 ± 0.74 1.2 ± 0.79	0.001	3.0 ± 0.67 1.5 ± 0.7	0.001	2.9 ± 0.99 1.3 ± 0.95	0.002	3.2 ± 0.63 1.8 ± 0.63	0.001
Im fatigue	4.9 ± 1.66 2.1 ± 1.6	0.001	5.1 ± 1.85 2.7 ± 1.64	0.007	4.1 ± 1.85 1.6 ± 1.84	0.007	4.4 ± 1.35 2.3 ± 1.06	0.001

Table 5
Evolution of maximal respiratory pressures in our four experimental groups.

Respiratory pressures	Group 1		Group 2		Group 3		Group 4	
	Pre-test Post-test	P						
Ipmax	24 ± 4.55 29.8 ± 4.13	0.008	28.8 ± 1.99 32.4 ± 1.9	< 0.05	18 ± 1.14 19.9 ± 0.74	< 0.05	18 ± 1.14 19.9 ± 0.74	< 0.05
Epmax	18.8 ± 1.14 20 ± 0.67	> 0.05	18 ± 1.14 19.9 ± 0.74	< 0.05	18 ± 1.14 19.9 ± 0.74	< 0.05	18 ± 1.14 19.9 ± 0.74	< 0.05
1.3.3. Quality of life

Table 3 shows significant improvement in the overall score pertaining to quality of life (symptoms experienced, repercussions on physical activity, impact on daily life) in the four groups constituting our population.

1.3.4. Functional capacities and fatigue

Table 4 details the results gathered during the 6-minute walking test (walking distance, heart rate, dyspnea and inspiratory muscle fatigue). It objectifies significant improvement in the dyspnea and lower limb fatigue scores in the four groups constituting our population. Only in group 1, however, did walking distance and heart rate significantly improve.

1.3.5. The costo-diaphragmatic recess X-ray

In none of our four groups did we detect any modification of the lower left costo-diaphragmatic recess; this finding underscores how difficult it is to detect modified positioning of the diaphragm.

1.3.6. Respiratory pressures

Table 5 shows that the only significant improvements of the parameters pertaining to respiratory pressures were registered in groups 1 and 3 with regard to $I_{p_{\text{max}}}$ alone.

1.4. Discussion

1.4.1. Spirometric volumes

Table 6 recapitulates the different individual and mean measurements carried out in our patients and allows us to draw attention to some of the points we consider important.

1.4.1.1. Forced expiratory volume in 1 second (FEV1). We noted that parametric improvement in this functional test following rehabilitation and exercise of the respiratory muscles was not significant. Our findings are in agreement with elements in the literature such as the studies by Lacasse, 1997 [17] and Mota et al., 2007 [20].

We nonetheless took note in the first group of a non-uniform but significant improvement with regard to the FEV1 parameters. This is in agreement with the results of the study by Crisafulli et al., 2007 [6] who found that exercise of the inspiratory muscles was more beneficial than exercise of the expiratory muscles with regard to improvement of pulmonary functioning in COPD patients.

After analytical study of the results, it appears that the younger subjects show greater improvement than the older ones, and this is in agreement with Dusser, 2008 [11], who found that early therapeutic intervention (Gold I and Gold II) has a more pronounced impact on FEV1 diminution. In the other groups, FEMI underwent no modification.

1.4.1.2. Peak Expiratory Flow Rate (PEFR). In the first group (inspiratory muscle exercise), we noted significantly improved PEFR parameters. The improvement came to 97.7% in patients with a mean age of 48.67 ± 4.6 years ($n = 3$) and to 14% in patients with a mean age of 66.28 ± 6.2 years ($n = 7$). In the other groups, PEFR underwent no modification. Once again, this is agreement with the findings of Mota et al. [20] and Crisafulli et al., 2007 [6].

1.4.1.3. Peak Inspiratory Flow Rate (PIFR). No significant PIFR improvement was noted in our four groups of patients. Whatever the rehabilitation methods applied, they do not modify PIFR parameters in COPD patients. Our results are in accordance with those described in the literature [20]. Only the subjects with an age below 51 years in group 1 ($n = 3$) presented highly pronounced PIFR improvement (115%). It would consequently appear that inspiratory muscle exercise by means of Threshold® IMT effectively contributes to improvement with regard to the spirometric signs, especially PIFR, which is closely connected with the functional capacity of the inspiratory muscles. Moreover, inspiratory muscle training is recommended by the French-language pneumology society (SPLF) as a means of COPD patient rehabilitation [33,34].

1.4.2. Saint-George’s respiratory questionnaire (SGRQ)

At the end of the rehabilitation program, significant improvement with regard to the quality of life parameters (patient satisfaction, functional capacities in daily life and heightened autonomy) was observed in all of our groups, particularly group 1.

These improvements have been mentioned by Wijksstra et al. [38] following a home rehabilitation program, and also by Lacasse [17] and Mota et al. [20].

1.4.3. The 6-minute walking test

At the end of the rehabilitation program, significant improvement with regard to the 6-minute walking test was observed in the four groups. It was observed for all the test parameters in group 1, but only for dyspnea and inspiratory muscle fatigue in the other groups.

Our results are in agreement with those reported by Redelmeier et al. [30], Weiner et al. [37], Derom et al. [10], Crowe et al. [9], as well as Perez and Guenard [25].

1.4.4. The lower costo-diaphragmatic recess

At the end of the rehabilitation program, measurements of the lower left costo-diaphragmatic angle had not been statistically modified; had such modification occurred, our hypothesis pertaining to modifications of the morphology of the diaphragm might have been corroborated. No significant difference in radiographic measurement before and after rehabilitation has been reported in COPD subjects.

1.4.5. Maximal respiratory pressures

At the end of the rehabilitation program, significant improvement in measured $I_{p_{\text{max}}}$ was observed in the 1st and the 3rd groups. No modification was undergone by $E_{p_{\text{max}}}$. The results of our study are in accordance with the data to be found in the literature. Specific and customized training
employing ThresholdIMT significantly improves $I_{p_{\text{max}}}$ and inspiratory muscle strength. As a result, ThresholdIMT has been used [25] in the retraining of COPD patients (Gold 1). Similar results have been noted in several other studies [7,15,19,36,37] in which it has been observed that inspiratory muscle exercise utilizing this tool, in the framework of a program progressing from 30% to 60% of the patient’s $I_{p_{\text{max}}}$, effectively complements the pulmonary rehabilitation program followed by the COPD patient.

In our study, the $E_{p_{\text{max}}}$ measurements carried out before and after rehabilitation in group 2 (training targeting the expiratory muscles) and group 3 (training targeting both the inspiratory and the expiratory muscles) underwent no modification, notwithstanding use of a ThresholdIMT PEP specifically targeting the expiratory muscles. The absence of change may be due to the fact that the maximum pressure provided by the apparatus (21 cm H$_2$O) is similar to the figures recorded in our patients (18 and 18.5 cm H$_2$O).

Table 6
Pre-test and post-test spirometric volumes in the four groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>FEV1 Pre-test</th>
<th>FEV1 Post-test</th>
<th>PEFR Pre-test</th>
<th>PEFR Post-test</th>
<th>PIFR Pre-test</th>
<th>PIFR Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.86</td>
<td>1.77</td>
<td>0.69</td>
<td>0.66</td>
<td>1.63</td>
<td>2.88</td>
</tr>
<tr>
<td>62</td>
<td>1.34</td>
<td>1.12</td>
<td>0.66</td>
<td>0.74</td>
<td>2.56</td>
<td>0.82</td>
</tr>
<tr>
<td>70</td>
<td>0.69</td>
<td>1.15</td>
<td>0.39</td>
<td>0.76</td>
<td>0.37</td>
<td>1.86</td>
</tr>
<tr>
<td>66</td>
<td>0.58</td>
<td>0.37</td>
<td>0.35</td>
<td>0.38</td>
<td>1.76</td>
<td>0.98</td>
</tr>
<tr>
<td>67</td>
<td>0.93</td>
<td>1.08</td>
<td>0.70</td>
<td>0.76</td>
<td>1.35</td>
<td>0.97</td>
</tr>
<tr>
<td>45</td>
<td>0.52</td>
<td>1.82</td>
<td>0.63</td>
<td>0.79</td>
<td>0.71</td>
<td>2.13</td>
</tr>
<tr>
<td>63</td>
<td>0.71</td>
<td>1.18</td>
<td>0.41</td>
<td>0.96</td>
<td>1.13</td>
<td>1.45</td>
</tr>
<tr>
<td>68</td>
<td>1.56</td>
<td>1.67</td>
<td>0.73</td>
<td>0.84</td>
<td>1.87</td>
<td>1.59</td>
</tr>
<tr>
<td>68</td>
<td>1.49</td>
<td>2.30</td>
<td>0.53</td>
<td>0.90</td>
<td>2.54</td>
<td>2.85</td>
</tr>
<tr>
<td>48</td>
<td>0.68</td>
<td>1.94</td>
<td>0.64</td>
<td>0.83</td>
<td>1.08</td>
<td>2.37</td>
</tr>
<tr>
<td>61 ± 9.32</td>
<td>0.93 ± 0.39</td>
<td>1.44 ± 0.57</td>
<td>0.57 ± 0.14</td>
<td>0.76 ± 0.16</td>
<td>1.5 ± 0.72</td>
<td>1.79 ± 0.76</td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.49</td>
<td>0.91</td>
<td>1.88</td>
<td>1.00</td>
<td>0.16</td>
<td>1.71</td>
</tr>
<tr>
<td>68</td>
<td>0.87</td>
<td>0.58</td>
<td>0.88</td>
<td>0.83</td>
<td>1.26</td>
<td>0.47</td>
</tr>
<tr>
<td>66</td>
<td>0.81</td>
<td>0.51</td>
<td>0.83</td>
<td>0.54</td>
<td>0.62</td>
<td>0.84</td>
</tr>
<tr>
<td>68</td>
<td>1.77</td>
<td>0.87</td>
<td>0.92</td>
<td>1.00</td>
<td>1.94</td>
<td>1.60</td>
</tr>
<tr>
<td>69</td>
<td>1.57</td>
<td>0.90</td>
<td>1.58</td>
<td>1.35</td>
<td>1.77</td>
<td>1.29</td>
</tr>
<tr>
<td>51</td>
<td>0.40</td>
<td>1.09</td>
<td>0.36</td>
<td>1.50</td>
<td>0.28</td>
<td>1.36</td>
</tr>
<tr>
<td>68</td>
<td>0.73</td>
<td>0.90</td>
<td>0.84</td>
<td>1.12</td>
<td>0.57</td>
<td>0.91</td>
</tr>
<tr>
<td>58</td>
<td>0.94</td>
<td>0.77</td>
<td>0.81</td>
<td>0.91</td>
<td>2.57</td>
<td>1.42</td>
</tr>
<tr>
<td>64</td>
<td>1.15</td>
<td>1.43</td>
<td>1.19</td>
<td>2.53</td>
<td>1.21</td>
<td>1.92</td>
</tr>
<tr>
<td>55</td>
<td>0.50</td>
<td>1.11</td>
<td>0.60</td>
<td>1.68</td>
<td>0.99</td>
<td>1.23</td>
</tr>
<tr>
<td>63.1 ± 5.29</td>
<td>0.86 ± 0.44</td>
<td>0.04 ± 0.36</td>
<td>0.98 ± 0.45</td>
<td>1.25 ± 0.56</td>
<td>1.13 ± 0.82</td>
<td>1.27 ± 0.46</td>
</tr>
<tr>
<td>Group 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.05</td>
<td>0.84</td>
<td>1.70</td>
<td>1.17</td>
<td>1.55</td>
<td>0.74</td>
</tr>
<tr>
<td>69</td>
<td>0.39</td>
<td>0.38</td>
<td>0.49</td>
<td>0.54</td>
<td>0.63</td>
<td>0.59</td>
</tr>
<tr>
<td>69</td>
<td>2.15</td>
<td>1.27</td>
<td>2.82</td>
<td>1.31</td>
<td>2.64</td>
<td>1.82</td>
</tr>
<tr>
<td>50</td>
<td>0.36</td>
<td>0.91</td>
<td>0.57</td>
<td>1.08</td>
<td>1.24</td>
<td>2.50</td>
</tr>
<tr>
<td>53</td>
<td>1.31</td>
<td>1.21</td>
<td>1.66</td>
<td>2.34</td>
<td>1.96</td>
<td>1.51</td>
</tr>
<tr>
<td>48</td>
<td>0.55</td>
<td>1.16</td>
<td>0.57</td>
<td>1.21</td>
<td>0.54</td>
<td>1.69</td>
</tr>
<tr>
<td>58</td>
<td>1.25</td>
<td>1.20</td>
<td>1.66</td>
<td>1.59</td>
<td>1.02</td>
<td>1.26</td>
</tr>
<tr>
<td>54</td>
<td>1.29</td>
<td>1.16</td>
<td>1.34</td>
<td>1.28</td>
<td>1.45</td>
<td>0.99</td>
</tr>
<tr>
<td>75</td>
<td>1.41</td>
<td>1.59</td>
<td>1.49</td>
<td>2.77</td>
<td>2.71</td>
<td>1.43</td>
</tr>
<tr>
<td>54</td>
<td>0.89</td>
<td>0.94</td>
<td>1.07</td>
<td>1.19</td>
<td>0.59</td>
<td>1.15</td>
</tr>
<tr>
<td>59.1 ± 9.30</td>
<td>1.06 ± 0.55</td>
<td>1.06 ± 0.47</td>
<td>1.33 ± 0.71</td>
<td>1.44 ± 0.65</td>
<td>1.43 ± 0.8</td>
<td>1.36 ± 0.56</td>
</tr>
<tr>
<td>Group 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0.86</td>
<td>0.74</td>
<td>1.14</td>
<td>0.81</td>
<td>1.12</td>
<td>1.38</td>
</tr>
<tr>
<td>48</td>
<td>0.86</td>
<td>0.50</td>
<td>1.83</td>
<td>1.48</td>
<td>1.43</td>
<td>0.42</td>
</tr>
<tr>
<td>54</td>
<td>0.46</td>
<td>0.50</td>
<td>0.64</td>
<td>0.49</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>57</td>
<td>0.79</td>
<td>0.70</td>
<td>0.95</td>
<td>0.84</td>
<td>1.25</td>
<td>2.42</td>
</tr>
<tr>
<td>46</td>
<td>1.26</td>
<td>2.00</td>
<td>1.92</td>
<td>2.46</td>
<td>1.16</td>
<td>2.09</td>
</tr>
<tr>
<td>53</td>
<td>0.66</td>
<td>0.53</td>
<td>0.68</td>
<td>0.64</td>
<td>1.05</td>
<td>0.79</td>
</tr>
<tr>
<td>65</td>
<td>0.94</td>
<td>0.68</td>
<td>1.00</td>
<td>0.97</td>
<td>1.04</td>
<td>1.05</td>
</tr>
<tr>
<td>55</td>
<td>1.28</td>
<td>1.24</td>
<td>1.59</td>
<td>1.67</td>
<td>3.06</td>
<td>1.35</td>
</tr>
<tr>
<td>68</td>
<td>1.46</td>
<td>1.17</td>
<td>1.72</td>
<td>1.29</td>
<td>2.25</td>
<td>1.69</td>
</tr>
<tr>
<td>73</td>
<td>1.26</td>
<td>0.94</td>
<td>1.31</td>
<td>0.90</td>
<td>1.97</td>
<td>1.44</td>
</tr>
<tr>
<td>58.1 ± 8.72</td>
<td>0.98 ± 0.32</td>
<td>0.9 ± 0.47</td>
<td>1.27 ± 0.44</td>
<td>1.15 ± 0.59</td>
<td>1.57 ± 0.66</td>
<td>1.39 ± 0.58</td>
</tr>
</tbody>
</table>
1.4.6. The limits of this study

One of the shortcomings of our work consisted in the fact that all of the evaluations were carried out and that all of the rehabilitation techniques were implemented by the same physiotherapist. The presence of another person performing evaluations of these patients might have been more suitable in order to avoid any possible personal influence with regard to the results of the assessments, especially in measurement of dyspnea and in the terms of the SGRQ parameters.

The relatively low population was due to the exigencies entailed by the limited time frame of our study. This population would subsequently grow as we recruited more subjects for the different groups.

1.5. Conclusion

Subsequent to application of our rehabilitation protocols and given the end results, we have concluded that training and exercise undertaken by COPD patients brings about significant improvement with regard to dyspnea and quality of life signs, whatever the rehabilitation program applied. It also allows for significant improvement with regard to the functional capacities and strength of the patients’ inspiratory and expiratory muscles. These improvements are associated with positive FEV1 evolution.

The best results in the different groups of patients have been observed in subjects of an average age ranging from 45 to 51 years. These subjects generally tend to feel “normal”, when the fact of the matter is that they present with pathological spirometric measurements and are unaware of the impact the pathology will have on their medium-range and long-range state of health. It can consequently be suggested that rehabilitation should take on a major role in early care and treatment of their COPD. Enhanced awareness of the interest of care taking in the initial stages would be likely to exert a beneficial influence with regard to the debilitating natural evolution of the disease.

In addition, it would be worthwhile to proceed to a long-term assessment of the effectiveness of our rehabilitation programs.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

2. Version française

2.1. Introduction

La broncho-pneumopathie chronique obstructive (BPCO) touche les personnes de plus de 40 ans fumeurs ou exposées à la fumée. C’est la cinquième cause de décès dans le monde, après l’infarctus du myocarde, les accidents vasculaires cérébraux, les infections respiratoires communautaires et la tuberculose. L’Organisation mondiale de la santé (OMS) stipule que cette mortalité devrait doubler en 2020 par rapport à 1990, et devenir la troisième cause de mortalité en raison de l’augmentation du tabagisme, principale cause de la BPCO, en particulier chez les femmes [31].

La BPCO, longtemps peu symptomatique, débute par une toux et une expectoration matinale, progressivement s’installe une dyspnée à l’effort, puis au repos, pouvant aller jusqu’à limiter les activités de la vie courante et représenter un handicap considérable avant de compromettre le pronostic vital.

Trois critères principaux permettent d’évaluer la dégradation des possibilités fonctionnelles du patient BPCO : le déclin du volume expiratoire maximal à la première seconde (VEMS), le déclin de la qualité de vie et le taux de la mortalité [14,28]. La spirale de l’évolution mène à une dégradation majeure de la qualité de vie [12].

2.1.1. Muscles inspiratoires

À la fin de l’expiration, il persiste au niveau des poumons du patient un piégeage d’un certain volume d’air créant une pression positive résiduelle. Cette pression impose, de la part du diaphragme au début de son travail, un effort inspiratoire important pour générer un débit inspiratoire suffisant lui permettant, tout d’abord, de vaincre la pression positive avant de pouvoir créer une pression négative qui provoquera l’appel de l’air dans les poumons [14].

Une partie importante de l’énergie qui pourrait être fournie par le diaphragme est utilisée pour cette lutte. Cela diminue le volume de réserve inspiratoire qui pourrait répondre à la demande respiratoire lors de l’effort du patient [32]. Ce travail provoque l’installation d’une distension thoraco-pulmonaire et une tendance à l’aplatissement des fibres musculaires diaphragmatiques qui les place dans des conditions mécaniquement défavorables. Les coupoles du diaphragme deviennent abaissées et aplatie. Elles seront placées dans une situation d’insuffisance fonctionnelle par raccourcissement de leurs fibres contractiles. De ce fait, l’action inspiratoire du diaphragme se réduit ce qui provoque une sollicitation des muscles inspirateurs accessoires [4].

Le diaphragme, pour s’adapter à ces modifications, va diminuer le nombre et la longueur des sarcomes pour recréer un meilleur rapport tension-longueur au niveau de ces fibres [18]. La force produite par cette nouvelle longueur est égale à celle produite par l’ancienne longueur. Le DIP serait préservé chez un bon nombre des patients. En revanche, la ventilation se fait aux alentours des seuils de charges susceptibles de conduire à une fatigue musculaire. Les fibres musculaires diafragmatiques de type IIA, moins fatigables, vont augmenter [3]. Ses capacités aérobies seront également majorées par augmentation de sa capilarisation et du nombre de ses mitochondries [18].
Avec l’évolution, la nouvelle relation tension-longueur ne lui permet plus de générer des forces optimales lors de sa contraction. Il travaille proche de ses capacités maximales de raccourcissement. Cela a pour conséquence une augmentation de son travail, et donc de sa consommation de l’oxygène, atteignant cinq fois les valeurs observées chez les sujets normaux [24]. Il ne peut plus répondre à une demande accrue de la consommation d’oxygène lorsque la maladie s’aggrave. La demande en oxygène est également augmentée par la sollicitation des muscles respiratoires accessoires [9,13]. Ses derniers semblent conserver leurs forces et leurs endurance. L’ensemble de ses modifications de la mécanique ventilatoire induisent une réduction de l’efficacité inspiratoire [23].

Ainsi, se trouve justifié le consensus actuel qui ramène la décompensation du patient BPCO à une fatigue musculaire du diaphragme et des autres muscles respiratoires [26].

2.1.2. Muscles expiratoires
Chez l’Homme, bien que la force des muscles abdominaux semble être conservée, leur endurance serait diminuée [1,35].

2.1.3. Courbe débit–volume
Le syndrome obstructif s’accompagne d’une réduction des débits respiratoires alors que les volumes sont peu ou pas modifiés. Le VEMS et le rapport de Tiffeneau (VEMS/capacité vitale fonctionnelle) ainsi que le débit expiratoire de pointe (DEP) sont diminués.

Les petites bronches sont partiellement obstruées à cause des conditions pathologiques. La courbe de débit–volume est typiquement concave vers le haut ce qui traduit la normalité de la vitesse de l’expiration de l’air qui se trouve dans les grosses voies respiratoires et la réduction de celle des petites voies qui est du à leurs obstructions partielles (Fig. 1).

L’évolution de la maladie se fait par l’augmentation de l’obstruction des voies respiratoires basses et de petites tailles ainsi que par la non réversibilité du processus [21].

Une intervention thérapeutique précoce, aux stades de Gold I et II (Tableau 1), aurait une plus grande efficacité sur le déclin du VEMS et la qualité de vie, mais relativement peu d’efficacité sur la survie (Fig. 2).

Une intervention thérapeutique plus tardive (aux stades de Gold II et III), lorsque l’obstruction semble être moins réversible, aura une efficacité thérapeutique plus limitée, notamment sur le déclin du VEMS. En revanche, elle pourra être plus marquée sur les exacerbations et la mortalité. À ces stades de la maladie, le poids des comorbidités est majeur ce qui justifie une approche globale et intégrée [11].

2.1.4. Prise en charge rééducative
Pour le rééducateur, la prise en charge adaptée des symptômes respiratoires liés à la BPCO, ou à son exacerbation, comprend :

Tableau 1
Classification de la broncho-pneumopathie chronique obstructive (BPCO) selon Gold [27]. Caractéristiques cliniques et paracliniques des différents stades de la BPCO.

<table>
<thead>
<tr>
<th>Stades</th>
<th>Caractéristiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Symptômes chroniques: toux, expectoration VEMS/CV ≥ 70 %</td>
</tr>
<tr>
<td>À risque</td>
<td>VEMS/CV < 70 %</td>
</tr>
<tr>
<td>BPCO peu sévère</td>
<td>VEMS ≥ 80 % de la valeur prédite avec ou sans symptômes chroniques (toux, expectorations)</td>
</tr>
<tr>
<td>II</td>
<td>VEMS/CV < 70 %</td>
</tr>
<tr>
<td>BPCO moyennement sévère</td>
<td>30 % ≤ VEMS < 80 % de la valeur prédite</td>
</tr>
<tr>
<td>IIIa</td>
<td>50 % ≤ VEMS < 80 % de la valeur prédite</td>
</tr>
<tr>
<td>IIIb</td>
<td>30 % ≤ VEMS < 50 % de la valeur prédite</td>
</tr>
<tr>
<td>BPCO sévère</td>
<td>VEMS/CV < 70 %</td>
</tr>
<tr>
<td></td>
<td>VEMS < 30 % de la valeur prédite ou VEMS < 50 % de la valeur prédite en présence d’insuffisance respiratoire chronique (PaO2 < 60 mm Hg)</td>
</tr>
</tbody>
</table>

VEMS : volume expiratoire maximal/seconde ; CV : capacité vitale.

Fig. 1. Courbe débit–volume. À gauche : courbe débit–volume normale ; à droite : courbe débit–volume du sujet broncho-pneumopathie chronique obstructive (BPCO). On note la courbe concave typique du BPCO qui traduit la normalité de la vitesse de l’expiration de l’air qui se trouve dans les grosses voies respiratoires et la réduction de celle des petites voies qui est du à leurs obstructions partielles.

Source : O’Donnell, 2008 [22].
2.2. Population et méthode

2.2.1. Population

Notre étude prospective a été réalisée pendant une période de sept mois. Les sujets ont été sélectionnés suite à une enquête menée auprès d’une population de tabagiques et d’ancien tabagiques (actifs ou passifs). Les tests spirométriques ont été proposés aux patients présentant des signes cliniques de BPCO (toux, dyspnée, expectorations), afin de confirmer ou d’infirmer le tableau clinique. Les patients diagnostiqués « sujets BPCO » ont été divisés en quatre groupes différents en les plaçant dans l’ordre de la consultation et un par un, dans les groupes de 1 à 4. Le choix des patients se faisait selon les critères d’inclusions suivantes :

- patient BPCO coopérants ;
- diagnostiqués cliniquement et par mesures spirométriques (grades I, II) selon Gold ;
- présentant un 50 % < VEMS < 80 % de la valeur prédite ou théorique à l’examen spirométrique ;
- présentant une amélioration inférieure à 15 % du VEMS après prise des bronchodilatateurs ;
- âgé entre 45 et 75 ans ;
- sexe indifférent.

Les critères d’exclusion ont été :

- présence d’une insuffisance cardiaque ou pathologie cardiaque associée ;
- ancien opéré pulmonaire ou cardiaque ;
- patient dépendant d’une oxygénothérapie ou sous traitement corticoïde ;
- pathologies neuromusculaires associées.

Les groupes de l’étude ont été défini comme suivant (Fig. 3) :

- le groupe 1 (inspiratoire) ;
- le groupe 2 (expiratoire) ;
- le groupe 3 (inspiratoire et expiratoire) ;
- le groupe 4 (témoin).

Nos variables ont été :

- les VEMS, le DEP et le débit inspiratoire instantané de pointe (DIP) évalués par spirométrie ;

Fig. 3. Répartition des différents groupes en fonction du programme de rééducation appliqué.
• les signes de la qualité de vie évalués par le QSG et ses sous-critères (symptômes, retentissement sur l’activité, impact sur la vie quotidienne) ;
• la distance de marche parcourue au cours d’un test de six minutes de marche ;
• la fréquence cardiaque (fc), au repos, évalués par un tensiomètre ;
• la dyspnée évaluée par l’échelle de Sadoul ;
• la fatigue des membres inférieurs (MI) évalué par l’Échelle visuelle analogique fatigue (EVAF) ;
• l’angle costo-diaphragmatique évalué par la radiographie du thorax de face ;
• une force développée par les muscles inspiratoire et expiratoire en mesurant, par le Threshold, les pressions inspiratoire (Pi_max) et expiratoire (Pe_max) maximales.

2.2.2. Protocoles
Seize séances de rééducation ont été effectuées chez chaque patient avec une fréquence de deux séances par semaine étalées sur huit semaines. La première et la 16e séance sont réservées à l’application des différents bilans et mesures.

2.2.2.1. Protocole d’évaluation. Il comporte :

• la mensuration des volumes spirométriques à travers trois grandeurs :
 o le VEMS de l’expiration forcée,
 o le DEP atteint lors d’une expiration forcée commencée à partir d’une inspiration maximale et,
 o le DIP atteint au cours d’une manoeuvre de capacité vitale inspiratoire forcée (CVIF) [29] ;
• l’évaluation de la qualité de vie du patient a été effectuée en utilisant le QSG qui est un instrument spécifiquement destiné aux patients atteints de pathologie respiratoire. Il comporte 50 questions couvrant trois dimensions : (1) symptômes, (2) retentissement sur l’activité et (3) impact sur la vie quotidienne. Le score total résume l’ensemble de l’information. Il varie entre 0 pour le meilleur et 100 pour le pire. Le questionnaire portait sur les deux derniers mois (au lieu de 12 mois dans la version originale du questionnaire) ;
• l’évaluation de la distance, en mètres, parcourue par le patient en six minutes [5]. Ce test permet, également, l’évaluation, à la fin du test, de :
 o la fréquence cardiaque mesurée par un cardio-fréquencemètre,
 o le nombre des pauses au cours du test est compté,
 o la fatigue des MI, basé sur les ressentis du patient lors du test est mesurée par EVAF. Cette échelle va de 0 (absence de fatigue) à 10 (fatigue insupportable nécessitant le repos et l’arrêt de la marche) ;
• la dyspnée est évaluée par le thérapeute sur les ressentis du patient lors du test. Elle est cotée de 0 à 4 selon la cotation de Sadoul. Toute diminution de l’importance de la dyspnée, allant vers « 0 », est en rapport avec une amélioration de la fonction de l’appareil respiratoire du sujet [5] ;
• une évaluation des pressions respiratoires maximales est réalisée en position assise. Le sujet est muni d’un pince-nez. Nous procédons à trois mesures et nous retenons la meilleure :
 o la pression inspiratoire maximale (Pi_max évalué par Threshold IMT) : le patient doit réaliser une inspiration maximale et forcée à partir d’une expiration maximale,
 o la pression expiratoire maximale (Pe_max évalué par Threshold PEP) : le patient doit expirer « vite et fort » à partir d’une inspiration profonde,
 o toute augmentation de la Pi_max et de la Pe_max est en rapport avec une amélioration de la force des muscles inspiratoires et expiratoires du sujet ;
• une comparaison, entre le pré- et le post-test, de l’angle costo-diaphragmatique inférieur de la coupole diaphragmatique sur un cliché radiologique de face en position debout (en inspiration profonde) (Fig. 4).

2.2.2.2. Matériels de mesure. Le spiromètre EasyOne™ permet de mesurer le débit de l’air entrant ou sortant des poumons du patient.

Le Threshold IMT (Fig. 5) est un outil qui sert à l’entraînement des muscles inspiratoires avec une charge de pression qui représente une fraction de la Pi_max du patient [7].

Le Threshold PEP (Fig. 6) est un outil de rééducation expiratoire, par pression expiratoire positive, équipé d’une valve unidirectionnelle indépendante du flux respiratoire du patient. La pression est réglable de 4 cm H2O à 20 cm H2O. La mesure de la force des muscles expiratoires permet de calculer la Pe_max.

Le cardio-fréquencemètre affiche automatiquement la fréquence cardiaque.

L’EVAF permet au patient d’auto-évaluer la fatigue ressentie au niveau de ses MI sur une échelle graduée de 0 à 10 (0 : pas de fatigue, 10 : fatigue insupportable nécessitant le repos).

Fig. 4. Degré d’aplatissement de la coupole diaphragmatique en inspiration maximale sur un cliché radiologique de face. Origine : RX de face d’un patient broncho-pneumopathie chronique obstructive (BPCO).
2.2.2.3. Protocoles expérimentaux. Tous les patients de notre étude ont bénéficié d’un programme de rééducation (protocole du groupe 4 ou protocole témoin) comportant :

- le désencombrement, ou toilette bronchique, par l’accélération du flux expiratoire (AFE) et l’expiration lente totale à glotte ouverte en latéral (ELTGOL) [2] ;
- la rééducation diaphragmatique qui permet de prendre conscience d’une augmentation de volume abdominal lors de l’inspiration et d’un creusement de l’abdomen lors de l’expiration dans les différentes positions de repos (assis, semi-assis ou debout) ou à l’effort (marche, toilette, escaliers...) [8] ;
- entraînement des muscles des MI : des exercices actifs des MI en flexion–extension (bicyclette) et des exercices d’endurance (marche sur tapis roulant) [27,28] ;
- programme de soutien psychologique (techniques cognitivo-comportementale) dans le but de réduire une éventuelle souffrance psychique des patients et de leur entourage ;
- éducation spécifique concernant surtout l’arrêt du tabac et la prévention contre les facteurs polluants (tabagisme passif, pollution industrielle ou autres).

En plus de ce protocole, les trois groupes expérimentaux ont bénéficié des protocoles d’exercices respiratoires additionnels comme suivant :

- le groupe 1 (inspiratoire) a bénéficié d’un protocole de rééducation, de huit à dix cycles de deux minutes, des muscles inspiratoires par le Threshold® IMT ;
- le groupe 2 (expiratoire) a bénéficié d’un protocole de rééducation, de huit à dix cycles de deux minutes, des muscles expiratoires par le Threshold® PEP ;
- le groupe 3 (inspiratoire et expiratoire) a bénéficié d’un protocole de rééducation, de quatre à cinq cycles de deux minutes, des muscles inspiratoires, par le Threshold® IMT, et des muscles expiratoires par le Threshold® PEP.

Pour ce faire, un bilan initial est effectué pour ces groupes en mesurant le « Pimax » et le « Pe max » du patient. La charge de pression utilisée au début des séances est de 30 % de chacun des deux paramètres (Pimax et Pe max). La charge de pression est augmentée à 60 % de ces pressions au fur et à mesure que la force des muscles inspiratoires et/ou expiratoires du patient augmente. La durée des exercices augmente progressivement jusqu’à 20 à 30 minutes pour chaque groupe.

Nous avons utilisé le logiciel de statistique Xlstat 2009. Les comparaisons de moyennes sont faites par un test t de Student. Nous avons fixé le niveau de signification à une valeur de p < 0,05.

2.3. Résultats

2.3.1. Données synoptiques des patients

Quarante sujets BPCO ont participé à cette étude. Les participants étaient répartis en 52,5 % de femmes (n = 21) et 47,5 % d’hommes (n = 19). Leur âge moyen était de
60,38 ± 8,02 ans [45, 75]. Vingt-sept sujets (70 %) étaient tabagiques, huit sujets (20 %) avaient arrêté de fumer depuis plus de six mois, cinq sujets (8 %) étaient non fumeurs. L’indice de masse corporel (IMC) chez nos patients était de 28,3 ± 3,11 kg/m² [22,2, 36,7].

2.3.2. Mesures spirométriques

Le Tableau 2 objective une amélioration significative de la VEMS et du DEP chez le groupe 1 uniquement. Le DIP n’a été modifié chez aucun de nos quatre groupes.

2.3.3. Qualité de vie

Le Tableau 3 montre une amélioration significative du score total des paramètres de la qualité de vie (sémiotèmes ressenti, niveau d’activité de la vie quotidienne, l’impact sur la vie de tous les jours) chez les quatre groupes de notre population.

2.3.4. Possibilités fonctionnelles et fatigabilité

Le Tableau 4 expose les résultats obtenus lors du test de six minutes de marche (périmètre de marche, fréquence cardiaque, dyspnée et fatigue des MI). Il objective une amélioration significative du score de dyspnée et de celui de fatigue des membres inférieurs chez les quatre groupes de notre population. La distance de marche et la fréquence cardiaque n’ont été améliorées significativement que chez le groupe 1.

2.3.5. L’angle costo-diaphragmatique radiologique

Nous n’avons détecté, chez aucun de nos quatre groupes, de modification de l’angle costo-diaphragmatique inférieur gauche. Cela traduit la difficulté de détection d’une modification du positionnement du diaphragme.

2.3.6. Pressions respiratoires

Le Tableau 5 nous montre que les seules améliorations significatives des paramètres concernant les pressions respiratoires ont été enregistrés chez les groupes 1 et 3 et cela dans la Piₘₚₐₓ uniquement.

2.4. Discussion

2.4.1. Les volumes spirométriques

Le Tableau 6 recense les différentes mesures individuelles et moyennes effectuées chez nos patients ce qui nous permet d’attirer l’attention sur certains points qui nous semblent importants.

2.4.1.1. Le volume expiratoire maximale par seconde (VEMS) . Nous avons trouvé que l’amélioration des paramètres de l’épreuve fonctionnelle suite à la rééducation et l’entraînement des muscles respiratoires n’est pas significative. Cela est en accord avec les données de la littérature dont les études de Lacasse, 1997 [17] et de Mota et al., 2007 [20].

Cependant, nous avons noté chez le premier groupe une amélioration significative, mais pas uniforme, des paramètres du VEMS. Cela est conforme aux résultats de l’étude de Crisafulli et al., 2007 [6] qui a trouvé que l’entraînement des muscles inspiratoires est plus bénéfique que l’entraînement des muscles expiratoires dans l’amélioration de la fonction pulmonaire des BPCO.

En étudiant analytiquement les résultats, il semble que les sujets les moins âgés ont eu une amélioration plus importante ce qui est en accord avec Dusser, 2008 [11]. Il avait trouvé qu’une intervention thérapeutique précoce (Gold I et II) a une plus grande efficacité sur le déclin du VEMS. Pour les autres groupes, la VEMS n’a pas été modifiée.

2.4.1.2. Le débit expiratoire de pointe (DEP) . Nous avons noté chez le premier groupe (entraînement des muscles inspiratoires) une amélioration significative des paramètres du DEP. Cette amélioration était de 97,7 % chez les patients qui avaient un moyen d’âge de 48,67 ± 4,6 ans (n = 3) et de 14 % chez les patients qui avaient un moyend’âge de 66,28 ± 6,2 ans (n = 7). Pour les autres groupes, le DEP n’a pas été modifié. Cela est, également, conforme aux résultats de Mota et al. [20] et de Crisafulli et al., 2007 [6].

2.4.1.3. Le débit inspiratoire de pointe (DIP) . L’amélioration du DIP n’était pas significative chez les quatre groupes de patients. La rééducation des malades BPCO, quel que soit la méthode de rééducation appliquée, ne modifie pas les paramètres du DIP. Nos résultats sont donc conformes à ceux décrits dans la littérature [20]. Seuls les sujets ayant un âge inférieur à 51 ans du groupe 1 (n = 3) ont présenté une amélioration très importante de leurs DIP (115 %). Il semble donc que l’entraînement des muscles inspiratoires par Threshold® IMT soit un moyen efficace dans l’amélioration des signes spirométriques, surtout le DIP, qui est en relation directe avec la force et la capacité fonctionnelle des muscles inspiratoires. De plus, l’entraînement des muscles inspiratoires est inscrit dans les recommandations concernant la réadaptation des BPCO [33,34].

2.4.2. Questionnaire de Saint-Georges (QSG)

À la fin du programme de rééducation, une amélioration significative des paramètres de la qualité de vie (satisfaction du patient, capacités fonctionnelles au quotidien et augmentation de son autonomie) est observée chez tous les groupes et plus particulièrement chez le groupe 1.

Ces améliorations ont été mentionnées par Wijkstra et al. [38] suite à un programme de rééducation à domicile, Lacasse [17] et Mota et al. [20].

2.4.3. Test de marche de six minutes

À la fin du programme de rééducation, une amélioration significative du test de marche de six minutes est observée chez les quatre groupes. Elle a été observée pour tous les paramètres du test chez le groupe 1, mais seulement pour la dyspnée et la fatigue des MI dans les autres groupes.

Nos résultats sont en accord avec les travaux de Redelmeier et al. [30], Weiner et al. [37], Derom et al. [10], Crowe et al. [9] ainsi qu’avec ceux de Perez et Guenard [25].
Tableau 2
Évolution des différentes mesures spirométriques (VEMS, DEP et DIP) chez les quatre groupes de notre expérimentation.

<table>
<thead>
<tr>
<th>Mesures spirométriques</th>
<th>Groupe 1</th>
<th>Groupe 2</th>
<th>Groupe 3</th>
<th>Groupe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEMS</td>
<td>0,93 ± 0,39</td>
<td>1,44 ± 0,57</td>
<td>0,03</td>
<td>0,86 ± 0,44</td>
</tr>
<tr>
<td>DEP</td>
<td>0,57 ± 0,14</td>
<td>0,76 ± 0,16</td>
<td>0,01</td>
<td>0,98 ± 0,45</td>
</tr>
<tr>
<td>DIP</td>
<td>1,5 ± 0,72</td>
<td>1,79 ± 0,76</td>
<td>> 0,05</td>
<td>1,13 ± 0,82</td>
</tr>
</tbody>
</table>

Tableau 3
Évolution des différents paramètres du questionnaire de Saint-Georges (QSG) chez les quatre groupes de notre expérimentation.

<table>
<thead>
<tr>
<th>Questionnaire de Saint-Georges</th>
<th>Groupe 1</th>
<th>Groupe 2</th>
<th>Groupe 3</th>
<th>Groupe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptômes</td>
<td>41,68 ± 8,73</td>
<td>31,23 ± 7,93</td>
<td>0,013</td>
<td>41,05 ± 7,7</td>
</tr>
<tr>
<td>Activité</td>
<td>20,06 ± 2,45</td>
<td>17,11 ± 2,45</td>
<td>0,014</td>
<td>21,02 ± 2,45</td>
</tr>
<tr>
<td>Impact</td>
<td>40,75 ± 7,7</td>
<td>31,23 ± 8,16</td>
<td>0,015</td>
<td>40,99 ± 8,73</td>
</tr>
<tr>
<td>Total</td>
<td>34,16 ± 7,09</td>
<td>25,92 ± 6,12</td>
<td>0,012</td>
<td>36,31 ± 6,9</td>
</tr>
</tbody>
</table>

Tableau 4
Évolution des différents paramètres évalués lors du test de 6mn de marche chez les quatre groupes de notre expérimentation.

<table>
<thead>
<tr>
<th>Test de 6 min de marche</th>
<th>Groupe 1</th>
<th>Groupe 2</th>
<th>Groupe 3</th>
<th>Groupe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Périmètre de marche (m)</td>
<td>383 ± 27,1</td>
<td>413,5 ± 5,61</td>
<td>0,019</td>
<td>381 ± 45,57</td>
</tr>
<tr>
<td>Fréquence cardiaque (bpm)</td>
<td>87,4 ± 8,4</td>
<td>85,5 ± 4,4</td>
<td>0,001</td>
<td>90,7 ± 7,47</td>
</tr>
<tr>
<td>Dyspnée</td>
<td>3,1 ± 0,74</td>
<td>1,2 ± 0,79</td>
<td>0,001</td>
<td>3 ± 0,67</td>
</tr>
<tr>
<td>Fatigue MI</td>
<td>4,9 ± 1,66</td>
<td>2,1 ± 1,6</td>
<td>0,001</td>
<td>5,1 ± 1,85</td>
</tr>
</tbody>
</table>

Tableau 5
Évolution des pressions respiratoires maximales chez les quatre groupes de notre expérimentation.

<table>
<thead>
<tr>
<th>Pressions respiratoires</th>
<th>Groupe 1</th>
<th>Groupe 2</th>
<th>Groupe 3</th>
<th>Groupe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pimax</td>
<td>24 ± 4,55</td>
<td>29,8 ± 4,13</td>
<td>0,008</td>
<td>28,8 ± 1,99</td>
</tr>
<tr>
<td>Pemax</td>
<td>18,8 ± 1,14</td>
<td>20 ± 0,67</td>
<td>> 0,05</td>
<td>18 ± 1,14</td>
</tr>
</tbody>
</table>
Tableau 6
Les volumes spirométriques en pré-test et post-test chez les quatre groupes.

<table>
<thead>
<tr>
<th>Âge</th>
<th>VEMS Pré-test</th>
<th>VEMS Post-test</th>
<th>DEP Pré-test</th>
<th>DEP Post-test</th>
<th>DIP Pré-test</th>
<th>DIP Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.86</td>
<td>1.77</td>
<td>0.69</td>
<td>0.66</td>
<td>1.63</td>
<td>2.88</td>
</tr>
<tr>
<td>62</td>
<td>1.34</td>
<td>1.12</td>
<td>0.66</td>
<td>0.74</td>
<td>2.56</td>
<td>0.82</td>
</tr>
<tr>
<td>70</td>
<td>0.69</td>
<td>1.15</td>
<td>0.39</td>
<td>0.76</td>
<td>0.37</td>
<td>1.86</td>
</tr>
<tr>
<td>66</td>
<td>0.58</td>
<td>0.37</td>
<td>0.35</td>
<td>0.38</td>
<td>1.76</td>
<td>0.98</td>
</tr>
<tr>
<td>67</td>
<td>0.93</td>
<td>1.08</td>
<td>0.7</td>
<td>0.76</td>
<td>1.35</td>
<td>0.97</td>
</tr>
<tr>
<td>45</td>
<td>0.52</td>
<td>1.82</td>
<td>0.63</td>
<td>0.79</td>
<td>0.71</td>
<td>2.13</td>
</tr>
<tr>
<td>63</td>
<td>0.71</td>
<td>1.18</td>
<td>0.41</td>
<td>0.96</td>
<td>1.13</td>
<td>1.45</td>
</tr>
<tr>
<td>57</td>
<td>1.56</td>
<td>1.67</td>
<td>0.73</td>
<td>0.84</td>
<td>1.87</td>
<td>1.59</td>
</tr>
<tr>
<td>68</td>
<td>1.49</td>
<td>2.3</td>
<td>0.53</td>
<td>0.9</td>
<td>2.54</td>
<td>2.85</td>
</tr>
<tr>
<td>48</td>
<td>0.68</td>
<td>1.94</td>
<td>0.64</td>
<td>0.83</td>
<td>1.08</td>
<td>2.37</td>
</tr>
<tr>
<td>61 ± 9,32</td>
<td>0.93 ± 0,39</td>
<td>1.44 ± 0,57</td>
<td>0.57 ± 0,14</td>
<td>0.76 ± 0,16</td>
<td>1.5 ± 0,72</td>
<td>1.79 ± 0,76</td>
</tr>
<tr>
<td>Groupe 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.49</td>
<td>0.91</td>
<td>1.88</td>
<td>1</td>
<td>0.16</td>
<td>1.71</td>
</tr>
<tr>
<td>68</td>
<td>0.87</td>
<td>0.58</td>
<td>0.88</td>
<td>0.83</td>
<td>1.26</td>
<td>0.47</td>
</tr>
<tr>
<td>66</td>
<td>0.81</td>
<td>0.51</td>
<td>0.83</td>
<td>0.54</td>
<td>0.62</td>
<td>0.84</td>
</tr>
<tr>
<td>68</td>
<td>1.17</td>
<td>0.87</td>
<td>0.92</td>
<td>1.1</td>
<td>1.94</td>
<td>1.6</td>
</tr>
<tr>
<td>69</td>
<td>1.57</td>
<td>0.9</td>
<td>1.58</td>
<td>1.55</td>
<td>1.77</td>
<td>1.29</td>
</tr>
<tr>
<td>51</td>
<td>0.4</td>
<td>1.09</td>
<td>0.36</td>
<td>1.5</td>
<td>0.28</td>
<td>1.36</td>
</tr>
<tr>
<td>58</td>
<td>0.73</td>
<td>0.9</td>
<td>0.84</td>
<td>1.12</td>
<td>0.57</td>
<td>0.91</td>
</tr>
<tr>
<td>64</td>
<td>0.94</td>
<td>0.77</td>
<td>0.81</td>
<td>0.91</td>
<td>2.57</td>
<td>1.42</td>
</tr>
<tr>
<td>61</td>
<td>1.15</td>
<td>1.43</td>
<td>1.19</td>
<td>2.53</td>
<td>1.21</td>
<td>1.92</td>
</tr>
<tr>
<td>65</td>
<td>0.5</td>
<td>1.11</td>
<td>0.6</td>
<td>1.68</td>
<td>0.99</td>
<td>1.23</td>
</tr>
<tr>
<td>63,1 ± 5,29</td>
<td>0.86 ± 0,44</td>
<td>0.04 ± 0,36</td>
<td>0.98 ± 0,45</td>
<td>1.25 ± 0,56</td>
<td>1.13 ± 0,82</td>
<td>1.27 ± 0,46</td>
</tr>
<tr>
<td>Groupe 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.05</td>
<td>0.84</td>
<td>1.7</td>
<td>1.17</td>
<td>1.55</td>
<td>0.74</td>
</tr>
<tr>
<td>69</td>
<td>0.39</td>
<td>0.38</td>
<td>0.49</td>
<td>0.54</td>
<td>0.63</td>
<td>0.59</td>
</tr>
<tr>
<td>69</td>
<td>2.15</td>
<td>1.27</td>
<td>2.82</td>
<td>1.31</td>
<td>2.64</td>
<td>1.82</td>
</tr>
<tr>
<td>50</td>
<td>0.36</td>
<td>0.91</td>
<td>0.57</td>
<td>1.08</td>
<td>1.24</td>
<td>2.5</td>
</tr>
<tr>
<td>53</td>
<td>1.31</td>
<td>1.21</td>
<td>1.66</td>
<td>2.34</td>
<td>1.96</td>
<td>1.51</td>
</tr>
<tr>
<td>48</td>
<td>0.55</td>
<td>1.16</td>
<td>0.57</td>
<td>1.21</td>
<td>0.54</td>
<td>1.69</td>
</tr>
<tr>
<td>58</td>
<td>1.25</td>
<td>1.2</td>
<td>1.66</td>
<td>1.59</td>
<td>1.02</td>
<td>1.26</td>
</tr>
<tr>
<td>54</td>
<td>1.29</td>
<td>1.16</td>
<td>1.34</td>
<td>1.28</td>
<td>1.45</td>
<td>0.99</td>
</tr>
<tr>
<td>75</td>
<td>1.41</td>
<td>1.59</td>
<td>1.49</td>
<td>2.77</td>
<td>2.71</td>
<td>1.43</td>
</tr>
<tr>
<td>54</td>
<td>0.89</td>
<td>0.94</td>
<td>1.07</td>
<td>1.19</td>
<td>0.59</td>
<td>1.15</td>
</tr>
<tr>
<td>59,1 ± 9,30</td>
<td>1.06 ± 0,55</td>
<td>1.06 ± 0,47</td>
<td>1.33 ± 0,71</td>
<td>1.44 ± 0,65</td>
<td>1.43 ± 0,8</td>
<td>1.36 ± 0,56</td>
</tr>
<tr>
<td>Groupe 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0.86</td>
<td>0.74</td>
<td>1.14</td>
<td>0.81</td>
<td>1.12</td>
<td>1.38</td>
</tr>
<tr>
<td>48</td>
<td>0.86</td>
<td>0.5</td>
<td>1.83</td>
<td>1.48</td>
<td>1.43</td>
<td>0.42</td>
</tr>
<tr>
<td>54</td>
<td>0.46</td>
<td>0.5</td>
<td>0.64</td>
<td>0.49</td>
<td>1.46</td>
<td>1.31</td>
</tr>
<tr>
<td>57</td>
<td>0.79</td>
<td>0.7</td>
<td>0.95</td>
<td>0.84</td>
<td>1.25</td>
<td>2.42</td>
</tr>
<tr>
<td>46</td>
<td>1.26</td>
<td>2</td>
<td>1.92</td>
<td>2.46</td>
<td>1.16</td>
<td>2.09</td>
</tr>
<tr>
<td>53</td>
<td>0.66</td>
<td>0.53</td>
<td>0.68</td>
<td>0.64</td>
<td>1.05</td>
<td>0.79</td>
</tr>
<tr>
<td>65</td>
<td>0.94</td>
<td>0.68</td>
<td>1</td>
<td>0.97</td>
<td>1.04</td>
<td>1.05</td>
</tr>
<tr>
<td>55</td>
<td>1.28</td>
<td>1.24</td>
<td>1.59</td>
<td>1.67</td>
<td>3.06</td>
<td>1.35</td>
</tr>
<tr>
<td>68</td>
<td>1.46</td>
<td>1.17</td>
<td>1.72</td>
<td>1.29</td>
<td>2.25</td>
<td>1.69</td>
</tr>
<tr>
<td>73</td>
<td>1.26</td>
<td>0.94</td>
<td>1.31</td>
<td>0.9</td>
<td>1.97</td>
<td>1.44</td>
</tr>
<tr>
<td>58,1 ± 8,72</td>
<td>0.98 ± 0,32</td>
<td>0.9 ± 0,47</td>
<td>1.27 ± 0,44</td>
<td>1.15 ± 0,59</td>
<td>1.57 ± 0,66</td>
<td>1.39 ± 0,58</td>
</tr>
</tbody>
</table>

2.4.4. Angle costo-diaphragmatique inférieur

À la fin du programme de rééducation, les mesures de l’angle costo-diaphragmatique inférieur gauche n’ont pas été statistiquement modifiées. Une telle modification aurait pu nous réconforter dans notre hypothèse de modification de la morphologie du diaphragme. La littérature ne rapporte aucune différence significative de la mesure radiographique avant et après rééducation chez les sujets BPCO.

2.4.5. Les pressions respiratoires maximales

À la fin du programme de rééducation une amélioration significative de la mesure du \(P_{\text{max}} \) est notée chez le premier et le troisième groupe. \(P_{\text{max}} \) n’a pas été modifiée.

Les résultats de notre étude sont en accord avec les données de la littérature. L’entraînement spécifique utilisant le ThresholdR IMT améliore significativement la \(P_{\text{max}} \) et la force des muscles inspiratoires. En conséquence, le ThresholdR IMT est utilisé [25] dans le réentraînement des patients atteints de...
BPCO (Gold I). Des résultats similaires ont été obtenus dans d’autres études [7,15,19,36,37] qui ont noté que l’entraînement des muscles inspiratoires, par cet outil, selon un programme allant de 30 % de la Pimax du patient à 60 %, est un complément important au programme de rééducation pulmonaire chez le patient BPCO.

Dans notre étude, les mesures du Pemax effectuées avant et après rééducation chez le groupe 2 (entraînement spécifique des muscles expiratoires) et le groupe 3 (entraînement des muscles inspiratoires et expiratoires) n’ont pas été modifiées, malgré l’utilisation d’un ThresholdPEP qui est spécifique pour l’entraînement des muscles expiratoires. Cela pourrait être dû au fait que la pression maximale assurée par l’appareil (21 cm H2O) est très proche des valeurs mesurés chez nos patients (18 et 18,5 cm H2O).

2.4.6. Les limites de cette étude

Un des points faibles de notre travail était que tous les bilans de même que les techniques rééducatives ont été appliquées par le même physiothérapeute. La présence d’une autre personne pour effectuer les évaluations chez ces patients aurait pu être plus convenable pour éviter toute influence personnelle possible sur les résultats des bilans surtout dans la mesure de la dyspnée et des paramètres du QSG.

Le nombre restreint de la population était dû aux exigences du temps limité de notre étude. Il serait amplifié par la suite en continuant à recruter des sujets dans les différents groupes.

2.5. Conclusion

Suite à l’application de nos protocoles de rééducation et selon les résultats obtenus, nous concluons que l’entraînement des patients atteints de BPCO permet une amélioration significative de la dyspnée et des signes de la qualité de vie des patients BPCO, quel que soit le programme de rééducation appliqué. Il permet également une amélioration significative des possibilités fonctionnelles et de la force musculaire des muscles inspiratoires et expiratoires des patients. Ces améliorations s’accompagnent d’une évolution positive du VEMS.

Les meilleurs résultats chez les différents groupes de patients sont notés chez les sujets d’âge moyen compris entre 45 et 51 ans. Ces sujets se sentent habituellement normaux mais, en réalité, ils présentent des mesures spirométriques pathologiques et sont méconnaissant de l’impact de cette pathologie sur leur futur sanitaire à court et à long terme. On peut donc suggérer que la réadaptation doit tenir une place importante dans la prise en charge de la BPCO, dès les stades précoces. Une sensibilisation aux intérêts et surtout à la précocité de la prise en charge constitue un moyen susceptible d’influencer de façon bénéfique l’évolution naturelle invalidante de la maladie.

En outre, il serait intéressant d’évaluer à long terme les effets de nos programmes de rééducation.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References

SPLF. Recommandations de la SPLF sur la réhabilitation du malade atteint de BPCO. Rev Mal Respir 2003;20. 4S2–68.

