Influence of plasma amino acid level on vasopressin secretion

F Schmitt1, 3, JL Bresson2, N Beressi2, DG Bichet5, D Chauveau4, L Bankir1

SUMMARY

Objectives: Vasopressin (VP) is known to be elevated in patients with diabetes mellitus (DM). While the influence of acute hyperglycemia has been ruled out, the mechanism or the osmotically active compound responsible for the increase in VP secretion is still not elucidated. Because the plasma level of several amino acids (AAs) is increased in DM, we evaluated whether AAs could represent an effective osmotic stimulus for VP secretion.

Research Design and Methods: In a cross-over study, eight healthy volunteers randomly received an infusion of isotonic saline (control) or mixed AA solution, i.e., at a low or a high rate (2 or 4.5 mg/min/kg BW, respectively). Plasma VP (PVP) was measured for two hours before and three hours during AA or control infusion.

Results: AA infusion induced a dose-dependent elevation in plasma AA concentration but did not alter PVP. However, effective plasma osmolality (Posm) (osmolality minus urea concentration) remained unchanged because a concommittant fall in plasma sodium concentration (PNa) was likely due to sodium-linked uptake of AA in peripheral cells, compensated for the rise in plasma AA.

Conclusion: The stability of effective Posm may explain the lack of change observed in PVP. Because sodium is a very efficient stimulus for VP secretion, it may be assumed that the fall in PNa occurring during AA infusion should have reduced VP secretion and thus PVP. However, effective plasma osmolality (P_posm), likely due to sodium-linked uptake of AA in peripheral cells, compensated for the rise in plasma AA.

Key-words: Diabetes Mellitus - Diuresis - Osmolar Clearance - Plasma Osmolality - Plasma Sodium Concentration.

RéSUMÉ

Influence du taux d’acides aminés plasmatiques sur la sécrétion d’hormone antidiurétique

Objectifs : L’hormone antidiurétique ou vasopressine (VP) est élevée dans le diabète sucré (DM). Cette élévation se semble pas due à l’hyperglycémie et sa cause ou le composé osmotiquement actif impliqué ne sont pas encore identifiés. Le taux plasmatique de certains acides aminés (AA) est augmenté dans le DM et nous avons donc voulu déterminer si les AAs pouvaient être un stimulus efficace pour la sécrétion de VP.

Méthodes : Dans une étude en "cross-over", huit volontaires ont reçu, dans un ordre aléatoire, une perfusion i.v. de sérum salé isotonique (contrôle) ou d’un mélange d’acides aminés à un taux modéré ou élevé (respectivement 2 ou 4.5 mg/min/kg poids corporel). Le taux plasmatique de VP (PVP) a été mesuré pendant les deux heures précédant la perfusion d’AAs ou de solution contrôle et pendant les trois heures suivant cette perfusion.

Résultats : La perfusion d’AAs a produit une élévation dose-dépendante du taux plasmatique d’AAs mais n’a pas modifié PVP. Cependant, l’osmolalité plasmatique (P_posm), efficace (osmolalité moins l’urée) n’a pas plus varié en raison d’une baisse simultanée de la natrémie (PNa), probablement due à une entrée sodium-dépendante d’AAs dans les cellules, qui a compensé l’augmentation d’osmolalité due aux AAs.

Conclusion : La stabilité de la P_posm efficace peut expliquer l’absence de changement de PVP. Le sodium est un stimulus très puissant de la sécrétion de VP. La baisse de PNa qui s’est produite pendant la perfusion d’AAs aurait donc dû faire baisser PVP. La stabilité de Pposm suggère que les AAs ont induit une augmentation de sécrétion de VP qui a compensé la baisse qu’a dû engendrer la chute de PNa. En conclusion, au cours d’expériences aiguës, les AAs semblent constituer un stimulus de la sécrétion de VP presque aussi efficace que le sodium. Des travaux complémentaires sont nécessaires pour déterminer l’influence des AAs dans la situation chronique caractéristique du diabète.

Mots-clés : Diabète sucré - Diurèse - Clairance osmolaire - Osmolalité plasmatique - Natrémie.

1 INSERM Unité 367, Institut du Fer à Moulin, Paris
2 Centre d’Investigation Clinique, Hôpital Necker, Paris
3 Laboratoire de Biochimie A, Hôpital Necker, Paris
4 Service de Néphrologie, Hôpital Necker, Paris
5 Centre de Recherche, Université de Montréal, Hôpital du Sacré-Cœur, Montréal, Canada

Address correspondence and reprint requests to: L Bankir. INSERM Unité 367, 17, rue du Fer à Moulin, 75005 Paris, France. bankir@ifm.inserm.fr

Received: January 16th, 2003; accepted: May 13th, 2003
More than twenty years ago, Zerbe et al. reported that patients with insulin-dependent diabetes mellitus (DM) and ketoadiposis had markedly elevated levels of vasopressin (VP) [1]. Subsequent studies in humans with non-ketotic uncontrolled DM confirmed this finding [1-6]. In human as in rat, correction of both ketoadiposis and hyperglycemia is accompanied by a significant reduction in plasma VP (PVP) [1-3, 5, 7].

As recently reevaluated in rats [8, 9] and humans [10, 11], the high PVP observed in DM appears to be an appropriate adaptation that limits the amount of water lost in the urine owing to glucose-induced osmotic diuresis. Although producing a large volume of urine with (moderately) diminished urine osmolality, the diabetic kidney exerts a considerable concentrating activity devoted to the concentration of glucose in the urine, as reflected by enhanced solute-free water reabsorption [8, 9, 11]. In the long term, this increased concentrating activity might be deleterious. Indeed, in humans and rodents, acute infusion of dDAVP induces a significant increase in urinary albumin excretion [12]. In rats, chronic infusion of dDAVP, a selective agonist of V2 vasopressin receptors has been shown to increase proteinuria and to accelerate the progression of renal failure induced by 5/6 nephrectomy [9, 13-15]. Finally, in diabetic rats, chronic blockade with a V2 receptor antagonist completely blunted the rise in albuminuria [16]. In the whole, these results suggest that vasopressin could play a role in the early stage of diabetic nephropathy [10].

What could be the factor responsible for increased VP secretion in DM? Hyperglycemia per se was first suspected. However, this hypothesis was ruled out when intravenous infusion of hypertonic dextrose was shown not to increase PVP in diabetics or in healthy controls [17, 18]. A resetting of VP responses to changes in plasma osmolality, the diabetic kidney exerts a considerable concentrating activity devoted to the concentration of glucose in the urine, as reflected by enhanced solute-free water reabsorption [8, 9, 11]. In the long term, this increased concentrating activity might be deleterious. Indeed, in humans and rodents, acute infusion of dDAVP induces a significant increase in urinary albumin excretion [12]. In rats, chronic infusion of dDAVP, a selective agonist of V2 vasopressin receptors has been shown to increase proteinuria and to accelerate the progression of renal failure induced by 5/6 nephrectomy [9, 13-15]. Finally, in diabetic rats, chronic blockade with a V2 receptor antagonist completely blunted the rise in albuminuria [16]. In the whole, these results suggest that vasopressin could play a role in the early stage of diabetic nephropathy [10].

Experimental subjects

The study was conducted in eight healthy male volunteers aged 22-27 yr (24.3 ± 0.7, mean ± SEM), weighing 58-81 kg (71 ± 3) and measuring 170-189 cm (180 ± 2). The protocol was approved by the Hôpital Necker-Enfants Malades Ethics Committee, and each subject gave written informed consent to participate to the study. Subjects were on a free diet and were not taking any medication in the last two weeks preceding the study. Urine was collected for the last 24 hours before each test for a posteriori control of daily fluid and solute excretion.

Materials and methods

Study protocol

The study was conducted at the “Centre d’Investigation Clinique” at Hôpital Necker-Enfants Malades (Paris). All subjects underwent the three tests at 2 - 3 weeks interval in a randomized order. They were infused with either isotonic saline plus a low dose of AA (Low-AA), isotonic saline plus a high dose of AA (High-AA) (see further), or isotonic saline alone (control). After completing all tests, data collected from one of the subjects was excluded a posteriori from analysis because of permanently high values of plasma VP (5-7 times above normal) and the discovery of a tumor of the central nervous system.

© 2019 Elsevier Masson SAS. Tous droits réservés. - Document téléchargé le 02/03/2019 Il est interdit et illicite de diffuser ce document.
After an overnight fast, tests started at 8:00 am. Indwelling canulas were placed in the right and left brachial veins (for infusions and blood sampling, respectively) and an i.v. infusion of isotonic saline was started at a rate of 1 ml/min and maintained for the entire test. A priming dose of inulin (Inutest®, Laevosan, Linz, Austria) was given i.v., followed by a sustaining infusion (inulin being added at the appropriate concentration to the isotonic saline infusion) in order to evaluate glomerular filtration rate (GFR). Subjects were not allowed to drink or eat throughout the test. They were in the supine position and stood up only for voiding every hour. After an equilibration period of 60 min and an initial voiding (urine not collected), five consecutive clearance periods were performed consisting in two one-hour basal periods (saline infusion) and three one-hour experimental periods (infusion of AA + saline or saline alone) (Fig 1).

A blood sample (~25 ml) was drawn from the brachial vein before the start of inulin administration (blank), and then every hour, starting just at the beginning of the first urine collection and ending after completion of the fifth urine collection. For biochemical, inulin and insulin measurements, blood was collected in heparinized tubes, and for glucagon and VP measurements on aprotinin and EDTA, respectively. Before each blood sampling, thirst intensity was evaluated on a visual scale [20]. Immediately after blood collection, plasma was separated by centrifugation. Osmolality was measured immediately in plasma and urine. Plasma and aliquots of urine samples were frozen at -20°C for subsequent analysis.

Special care was given to avoid any perturbation in renal function. Therefore no water load was given before the experimental protocol and no oral fluid supply was allowed during the tests so as not to alter the vasopressin-fluid balance. The rate of isotonic saline infused i.v. was modest (1 ml/min) and remained unchanged throughout the three tests to avoid volume expansion and unequal fluid supply. This rate of isotonic saline infusion was shown to induce no change in VP secretion and not to interfere with the VP response to various osmotic stimuli ([20] and G. Robertson, personal communication). Renal blood flow, which is often approximated by the clearance of paraminohippurate, was not measured in this study because this marker is known to influence proximal tubular reabsorption [35, 36] and could interfere with the effects of AAs on renal function.

Amino acid mixture

A commercial mixture of AAs, (Azonutril 25®, Pharmacia, France) was infused in the experimental periods (i.e., for the last three hours of the tests). It consisted of branched-chain AAs (21%), arginine (17%), gluconeogenic AAs (38%) and other AAs (24%). It was infused, undiluted, at a rate providing per kg body weight either 2 mg AA/min (= 15 µmol/min) for the Low-AA test, or 4.5 mg/min AA (= 34 µmol/min) for the High-AA test (corresponding to 13.6 and 30.5 µl/min Azonutril solution per kg body weight, respectively).

Biochemical measurements

Plasma and urinary VP concentrations were measured by radioimmunoassay as previously described [37, 38]. All plasma samples were assayed at the same time, within a single RIA. This radioimmunoassay can routinely detect concentrations of VP as low as 0.5 pg/ml [37]. Plasma from
patients with severe central diabetes insipidus were included and found to have undetectable VP level. The urinary samples were not extracted, were diluted , and were also measured within a single RIA.

The concentration of individual AAs in plasma was measured by ion exchange chromatography (Beckman System Analyzer 6300) and subsequent coloration by ninhydrine [39]. Plasma insulin and glucagon concentrations were measured by radioimmunoassays (Inskit 5, Sorin Diagnostics, and Glucagon-RIA, Biodata Diagnostics). Inulin concentration was measured by a colorimetric method adapted on Autoanalyzer I Technicon (Technicon Instrument Corp.) [40], and plasma and urine osmolality (Pmen and Umen, respectively) with a freezing point osmometer (Microosmometer Roebling). The concentrations of the main electrolytes, glucose and urea in plasma and urine were determined on a multiparametric analyzer (Hitachi 917).

Calculations and statistical analysis

Urine flow rate and the excretion of total osmole, main urinary solutes, and VP, as well as inulin clearance and solute-free water reabsorption (TH2O) were calculated according to usual formulas. The "basal" period was taken as the mean of the two basal hours, and the "experimental" period as the mean of the last two hours of the AA or saline infusion. The statistical analysis was performed with Statview 5, using one-way ANOVA with repeated measures followed by the Fisher post-hoc test.

Results

Changes induced in plasma AA concentration (PAA) in response to AA infusion are depicted in figure 2 (top). A dose-dependent rise in PAA was observed during the first hour and PAA almost plateaued during the last two hours at about 1.8 mmol/L above baseline for the Low-AA test and 4.4 mmol/L for the High-AA test. Reaching a plateau despite continuous infusion demonstrates that progressive storage and/or metabolism of infused AA was equivalent to the rate of AA infusion. The increase in plasma concentration of arginine, lysine, leucine, and valine accounted for the largest fraction of the rise in PAA. Their concentration rose 7.3-, 4.3-, 4.2-, and 3.9-fold, respectively. These 4 AA together represented 22.3% of total plasma AAs in the basal period and 39.6% at the end of the High-AA test. Glutamine, the most abundant AA in plasma (about 600 µmol/L), did not increase during AA infusion.

The changes observed in response to saline or AA infusions are displayed in Table 1. ANOVA revealed no significant differences between the basal periods of the three tests for any parameter. Accordingly, for the sake of simplification, basal values shown in Table I are pooled for the three tests. But each experimental period was compared to its own basal period in the statistical analysis. Most changes observed in experimental periods of the High-AA infusion rate reached statistical significance. During the Low-AA test, intermediate levels between the control test and the High-AA test were reached (Tab I).

As expected, AA infusion increased GFR (by 8% with Low-AA and 27% with High-AA) (Tab I). Both urinary flow rate and osmolality tended to increase after AA infusion, resulting in a significant rise in osmolar excretion (+ 50% with High-AA). TH2O increased significantly after AA infusion with a similar time course as the change in osmolar excretion (Tab I and Fig 3). Plasma glucagon rose dose-dependently during AA infusion (+ 50% with Low-AA and + 100% with High-AA, p < 0.001 for both). Insulin rose only modestly with the Low-AA infusion (+ 25%, NS) but more intensely with High-AA (+ 112%, p < 0.001) (Tab I). No change was observed in these two hormones during the control test. The time course of the rise in the two pancreatic hormones during AA infusion was strikingly different. In both tests, glucagon rose steadily during the three hours. In contrast, insulin, after rising during the first hour, remained stable for the last two hours.

Plasma glucose and plasma urca concentrations rose dose-dependently during AA infusion (in the High-AA test, + 0.3 and + 1.6 mmol/L, respectively) (Tab I), indicating that part of the amino acids were used for gluconeogenesis and ureagenesis (two closely associated metabolic pathways in the liver). The newly-formed urca was excreted by the kidney, resulting in almost a doubling of urca excretion during the High-AA test. The rise in urca excretion accounted for half the total increase in osmolar excretion during both the Low- and the High-AA infusions (Tab I). Sodium excretion also increased significantly (by more than one third during High-AA).

In spite of the marked elevation in PAA, no change was observed in PVP during AA infusion at either dose (Fig 2) while a dose-dependent rise in urinary VP excretion was observed (Fig 3). The changes in urinary VP excretion were not correlated with the simultaneous changes in urine flow rate (not shown) but exhibited a significant correlation with the changes in osmolar excretion (p < 0.01). Of note, the thirst sensation, which increased with time in the control test, increased more intensely, and dose-dependently, during AA infusion (Tab I).

The rise in Pmen did not parallel the rise in PAA (+ 1.8 mosmol/kg H2O for Pmen as compared to + 4.4 mmol/L for PAA during the High-AA test). This is explained by the simultaneous, dose-dependent fall in plasma sodium concentration (PNa) (- 1.6 mmol/L during the High-AA test, p < 0.01) (Tab I). Plasma chloride concentration remained unchanged. The fall in PNa was significantly and negatively correlated with the rise in PAA occurring simultaneously in the three tests (Fig 4). Together with the fall in associated anion(s), this fall in PNa should have decreased Pmen by

© 2019 Elsevier Masson SAS. Tous droits réservés. - Document téléchargé le 02/03/2019 Il est interdit et illégal de diffuser ce document.
Table I
Effect of amino acid (AA) infusion in healthy volunteers.

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Basal</th>
<th>Changes between experimental and basal periods</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Low AA</td>
<td>High AA</td>
</tr>
<tr>
<td>Plasma measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino acids mmol/l</td>
<td>3.0 ± 0.1</td>
<td>−0.1 ± 0.0</td>
<td>1.8 ± 0.1 ***</td>
</tr>
<tr>
<td>Osmolality mosmol/kg H2O</td>
<td>291 ± 1</td>
<td>−0.6 ± 0.4</td>
<td>−1.6 ± 1.5</td>
</tr>
<tr>
<td>Urea mmol/l</td>
<td>4.3 ± 0.1</td>
<td>−0.1 ± 0.2</td>
<td>0.5 ± 0.1 ***</td>
</tr>
<tr>
<td>Osmoles-Urea mmol/l</td>
<td>287 ± 1</td>
<td>−0.5 ± 0.3</td>
<td>0.7 ± 0.6</td>
</tr>
<tr>
<td>Sodium mmol/l</td>
<td>140.8 ± 0.2</td>
<td>0.3 ± 0.5</td>
<td>−0.8 ± 0.2 ***</td>
</tr>
<tr>
<td>Chloride mmol/l</td>
<td>105.1 ± 0.5</td>
<td>0.1 ± 0.3</td>
<td>−0.1 ± 0.3</td>
</tr>
<tr>
<td>Glucose mmol/l</td>
<td>4.9 ± 0.1</td>
<td>−0.2 ± 0.2</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>Glucagon pg/ml</td>
<td>10.8 ± 1.3</td>
<td>1.3 ± 0.9</td>
<td>5.3 ± 5.0 ***</td>
</tr>
<tr>
<td>Insulin pg/ml</td>
<td>136 ± 15</td>
<td>2 ± 17</td>
<td>42 ± 10</td>
</tr>
</tbody>
</table>

AVP and water handling

Plasma VP pg/ml	0.71 ± 0.15	0.10 ± 0.10	0.06 ± 0.08	0.06 ± 0.13	NS
VP Urinary Exc. pg/h	3421 ± 629	182 ± 590	2024 ± 508 ***	5054 ± 1165 ***	< 0.0001
Urine Flow Rate ml/h	109 ± 6	−16 ± 8	−1 ± 19	47 ± 12	NS
Urine Osmolality mosmol/kg H2O	579 ± 44	71 ± 41	66 ± 58	19 ± 53	NS
TH2O ml/h	87 ± 16	2 ± 11	26 ± 13 **	67 ± 12 ***	< 0.001
Thirst arbitrary unit	1.2 ± 0.3	1.9 ± 0.3 ***	2.0 ± 0.4***	2.9 ± 0.5***	< 0.0001

Clearance and excretions

Inulin clearance ml/min	133 ± 6	1 ± 4	11 ± 12 *	36 ± 5 ***	< 0.005
Osmolar mosmol/h	57.3 ± 4.6	−4.4 ± 1.5	7.1 ± 5.9 *	33.8 ± 5.0 ***	< 0.001
Excretion					
Urea Excretion mmol/h	17.9 ± 1.0	−0.8 ± 0.8	3.8 ± 1.5 ***	15.0 ± 1.5 ***	< 0.0001
Sodium mmol/h	14.7 ± 1.7	0.9 ± 0.8	3.5 ± 2.0 **	5.7 ± 1.7 ***	< 0.0005

Values are means ± SE of 7 subjects. Values shown for the basal period are means of values obtained during the three tests. However, the differences shown in the next three columns as well as the statistical analysis were evaluated by taking each test’s own basal period. Asterisks give the significance of the differences between experimental and basal periods within each AA or control test (Fisher post hoc): *p<0.05; **p<0.01; ***p<0.001.

1.6 x 2 = 3.2 mosmol/kg H2O, a value which approximately corresponds to the “gap” seen between the rise in PAA and that in P_osm.

Discussion

In this study, we attempted to evaluate whether changes in plasma amino acid concentration influence vasopressin secretion in healthy subjects. Amino acid infusion at two different rates induced the well-known changes in GFR [41-43] and in glucagon and insulin secretion [41, 44]. They also resulted in marked elevations in osmolar excretion and in solute-free water reabsorption. However, no change in plasma VP concentration was observed even after the largest dose of AA which raised their plasma concentration from 3.0 to 7.4 mmol/L. At first sight, this result suggests that AA did not influence VP secretion.

Alternatively, the rise in PVP due to AA changes may have been masked by a simultaneous negative influence. It is probably the case because a significant dose-dependent fall in PNa was observed, and PNa is known to be the most efficient plasma solute influencing VP secretion [20]. In contrast, urea is known to have little effect because it freely equilibrates in extra and intracellular compartments and thus does not represent an “effective” solute for osmotic sensory cells in the neurohypothalamus [20]. As shown in figure 5, the “effective” osmotic pressure did not change during AA infusion, as a result of opposite changes in PAA and PNa. Should no other osmole had interfered, the fall in PNa would have induced a fall in PVP [38]. Thus, we may reasonably propose that the lack of change in plasma VP in the present study results from a balance between two opposite influences on VP secretion, one, negative, due to the significant fall in PNa, and one positive, due to the rise in PAA. Accordingly,
AAs represent an effective osmotic stimulus for VP secretion which is almost equally potent as that induced by sodium. Why did PNa drop during AA infusion without an associated change in plasma chloride? Plasma AA plateaued after one hour although the infusion was maintained for three hours. Thus, a large amount of AA must have been stored or partly metabolized in the liver as indicated by the rise in plasma urea and in urea excretion. Cellular uptake of AA is achieved through sodium-coupled cotransporters. Thus, the fall in PNa most probably results from a simultaneous cellular uptake of AAs and sodium.

It may be surprising to observe a dose-dependent increase in urinary VP excretion in response to AA infusion, in the absence of any change in PVP. However, previous studies have well established that urinary VP excretion may be influenced by other factors than PVP. First, the rise in GFR induced by AA infusion should increase proportionately the renal clearance of VP, explaining about 1/5 of the rise in urinary VP seen in the High-AA test. Second, as well documented in several different experimental and pathological situations, changes in osmolar excretion markedly influence VP handling by the renal tubule and thus VP recovery in the urine, independently of any change in PVP and GFR [45]. In rats with DM (a condition in which solute excretion rises dramatically due to glycosuria), urinary VP excretion was found to increase more than fifteen-fold when PVP rose only three-fold [46]. Thus, the marked rise in osmolar excretion which occurred after AA infusion may have reduced VP reabsorption proportionately, as suggested by parallel changes in VP and osmole excretions (Fig 3).

The primary aim of this study was to determine if a disturbance in plasma AA could account for the elevated VP secretion reported in diabetes mellitus, a chronic disorder. This study explored the influence of an acute change in AAs...
Time course of changes in VP excretion (top), osmolar excretion (middle), and solute-free water reabsorption ($T^{\text{H}_2\text{O}}$) (bottom) during the three tests. Symbols and abscissa as in Figure 2. See Table I for statistical analysis.
which led to abrupt changes in other plasma solutes including sodium. A significant decrease in P_{Na} also occurs during chronic hyperglycemia [1, 5, 18, 19, 47, 48]. However, during a chronic situation with permanent elevations of glucose and AAs, a new steady state is established in which various regulatory adaptations “reset” the threshold for VP secretion to a lower level in relation to the actual P_{Na}. This may give more importance to AAs in inducing a rise in VP secretion. The same applies for the rise in plasma glucose. Zerbe et al. concluded that glucose did not participate in the rise in VP seen in diabetes mellitus because they observed no rise in P_{VP} after an acute infusion of hypertonic dextrose in healthy subjects or in patients with DM [18]. However, and similarly to what was observed in the present study, P_{Na} fell during these acute dextrose loads. Accordingly, both glucose and AA could contribute to stimulate VP secretion in DM, although this effect is masked after acute loads because of the countering effect of a simultaneous acute decline in P_{Na}.

Do all AAs influence VP secretion equally? Although the setting of this experiment does not allow us to answer this question, it may be assumed that branched chain AAs have the most significant influence on VP secretion. Indeed, their plasma concentration after a protein meal is known to remain elevated for a longer duration than that of other AAs [49], probably because they undergo little degradation in the liver. Leucine and valine are the two most abundant branched chain AA in plasma. The level of these two AAs rose quite significantly in the present study, and in diabetes mellitus their plasma level is more enhanced than that of other AAs [26, 27].

In conclusion, the present results suggest that AAs behave as osmotically active solutes which can stimulate VP secretion. However, in acute experiments, the concomitant fall in plasma sodium (likely due to intense cotransport with AA) tends to reduce VP secretion and to hamper the expected rise induced by AAs. Whether an increase in

Amino acids and vasopressin secretion

Figure 4
Relationship between changes in plasma sodium and in plasma AA concentrations observed during the three tests. Each point is the mean ± SEM of 7 subjects. The correlation coefficient r and its statistical significance are shown.

Figure 5
Changes in plasma AA concentration (open circles), plasma sodium concentration (closed circles), and “effective” plasma osmolality (= osmolality minus urea concentration) (diamonds) observed between the experimental (Exper) and basal (Basal) periods during the three tests (Control, Low-AA, High AA). Each point is the mean of 7 subjects. Error bars are SEM (some error bars are not visible because they are smaller than the symbols). ***, $p > 0.001$ vs Basal.
plasma AAs contributes to stimulate VP secretion in a chronic situation such as diabetes mellitus and may account for the elevated circulating level of this hormone warrants further investigation.

Acknowledgements – The authors want to thank Agnès Antoine and Violetta Leceur (CIC Necker, Paris) for their technical contribution to study, Michèle Lonergan, Marie-Françoise Arthus and Nicole Ruel (Hôpital du Sacré-Cœur, Montréal) for AVP measurements, and Sébastien Feurte INSERM U.367, (Paris) for his participation to the analysis of the data and presentation of the results.

This study was supported by a grant from INSERM (Contrat n° 96 CIC NEC 01).

References