Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011

P. Kieny a,*,b,c, S. Chollet d, P. Delalande b, M. Le Fort a, A. Magot c, Y. Pereon b, B. Perrouin Verbe a

Service de MPR neurologique, hôpital Saint-Jacques, CHU de Nantes, 85, rue Saint-Jacques, 44093 Nantes cedex 1, France
b Centre AFM Yolaine de Kepper; 49170 Saint-Georges-Sur-Loire, France
c Centre de référence des maladies neuromusculaires rares Nantes Angers, CHU de Nantes, 44093 Nantes cedex 1, France
d Service de pneumologie, CHU de Nantes, 44093 Nantes cedex 1, France

Received 29 November 2012; accepted 8 June 2013

Abstract

Objectives. – Retrospective study over the last 30 years of life expectancy in patients suffering from Duchenne muscular dystrophy (DMD). Analysis of the role of ventilatory assistance and causes of death.

Patients and methods. – One hundred and nineteen adult DMD patients were hosted during 1981 to 2011 at AFM Yolaine de Kepper centre, Saint-Georges-sur-Loire, France. Patients’ life expectancy was calculated using Kaplan-Meier model.

Results. – Life expectancy without or with ventilatory assistance was 22.16 and 36.23 years, respectively. Similarly, life expectancy of patients born from 1970 (mostly with ventilatory assistance) was 40.95 years old from 1970 and 25.77 years old before 1970. Causes of death changed. Cardiac origins of death have increased from 8% to 44%.

Conclusion. – Ventilator assistance, in this study mostly through tracheotomy prolongs by more than 15 years life expectancy of DMD patients. It allows conservation of a satisfactory quality of life, and should be systematically proposed to patients.

Keywords: Duchenne muscular dystrophy; Survival; Ventilatory assistance; Tracheotomy

Résumé

Objectifs. – Étude rétrospective sur 30 ans de l’espérance de vie des patients atteints de dystrophie musculaire de Duchenne (DMD). Analyse du rôle de la ventilation assistée et des causes de décès.

Patients et méthodes. – Cent-dix-neuf patients adultes atteints de DMD ont séjourné au centre AFM Yolaine de Kepper, Saint-Georges-sur-Loire (France) entre 1981 et 2011. L’espérance de vie des patients a été calculée en utilisant le modèle de Kaplan-Meier.

Résultats. – L’espérance de vie des patients atteints de DMD sans ventilation assistée était de 22,16 ans et de 36,23 ans pour ceux qui en ont bénéficié. L’espérance de vie des patients nés à partir de 1970 (et ainsi le plus souvent ventilés) était de 40,95 ans et d’uniquement 25,77 ans pour ceux nés avant 1970. Les causes de décès se sont également modifiées avec une progression des décès d’origine cardiaques de 8 % à 44 %.

Conclusion. – La ventilation assistée et dans cette étude principalement par trachéotomie, permet de prolonger l’espérance de vie de plus de 15 ans des patients atteints de DMD. Elle permet de conserver une qualité de vie satisfaisante et doit être systématiquement proposée aux patients.

Mots clés : Dystrophie musculaire de Duchenne ; Espérance de vie ; Assistance ventilatoire ; Trachéotomie

* Service de MPR neurologique, hôpital Saint-Jacques, CHU de Nantes, 44093 Nantes cedex 1, France.
E-mail address: pierre.kieny@orange.fr (P. Kieny).

1877-0657/$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.rehab.2013.06.002
1. English version

1.1. Introduction

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy. It is a recessive X-linked disease which affects one every 3500 male births. DMD results from the absence of one particular protein, called dystrophin, in myocytes, which leads to loss of membrane integrity, followed by progressive destruction of the muscle fiber.

Clinical signs usually develop between 2 and 5 years of age, with patients experiencing difficulty running, climbing stairs and frequent falls. Cognitive impairment may also be present in 30% of cases. Weakness and muscle wasting, originally present mostly in the pelvic girdle, progressively extends to all muscles. Indeed, Gowers sign (children use of their arms to push themselves erect by moving their hands up their thighs. This permits assuming a standing position from one of kneeling) is observed at a median age of 5 years [19] and walking becomes waddling.

As the deficit worsens, falls become more frequent with impossibility to stand up. Independent walking becomes impossible in most cases between 9 and 13 years [15,19] Contractures worsen in the lower and upper limbs. Severe scoliosis occurs, which often requires spinal arthrodesis. Motor deficit continues worsening with reduction of autonomy for simple acts of daily life. Loss of ability to self-feed only occurs around age 18.

Before onset of ventilatory assistance by tracheotomy or NIV, death occurred typically between 16.2 and 19 years, and almost always before age 25 [11,21] mainly due to terminal respiratory failure, main cause of death. Indeed vital capacity (VC), which progresses normally up to 9 to 10 years of age, increases only slightly and slowly after this age, and finally decreases by 5 to 10% per year after age 14 with gradual onset of restrictive respiratory failure, which leads in most cases to death at age 18 in absence of ventilatory assistance. [4,11,15,21,23,24].

Hypoventilation and hypercapnia first occur during sleep [20]. At this time, VC is usually at 20 to 50% of normal values, and implementation of NIV showed no benefit for survival [21].

Appearance of diurnal hypercapnia follows this initial period, and without ventilatory assistance, mean survival in DMD is less than 1 year [19].

So, for DMD patients ventilation onset is decided if:

- either VC inferior to 20%, a Pa CO2 superior to 45 mmHg or two episodes of acute respiratory failure [21];
- or VC inferior to 680 mL and maximal inspiratory pression (MIP) inferior to 3.5 kPa [28] (predictive of diurnal hypocapnia) [20].

Gradually, ventilation duration is majored during the day, usually with a mouth piece. Dependance for permanent ventilation is often around 23 years old when VC is around 320 mL [15].

A tracheotomy is proposed for non-feasibility or wish of the patient. Most often, it has been realized because of an uncontrollable obstruction despite cough assistance or due to major problems with swallowing or feeding difficulties.

The alternative cause of death is dilated cardiomyopathy, which can begin around age 5, become symptomatic at 15 (diagnosis of cardiomyopathy is evident at 14.4 ans (± 2.3 years) in the study of Connuck et al. [7]) and is almost systematically present after age 18. The evolution of dilated cardiomyopathy is not correlated with the extend of skeletal and respiratory muscle involvement. Myocardopathy treatment (angiotensin-converting enzyme inhibitors and eventually associated betablockers) is recommended from age of 10 [8,9,17]. Corticosteroid therapy was shown to slow down myocardopathy evolution [17].

The aim of the present study is to measure the evolution of life expectancy that occurred in the last 30 years at the center of AFM Yolaine de Kepper (France) where patients with DMD have been since 1981, temporarily or permanently. The share of ventilatory management that began in some centers in the late 1970s, but a more systematic way between 1985 and 1990 as well as the causes of death were also studied.

1.2. Patients and methods

1.2.1. Patients

All temporary or permanent residents labelled DMD at AFM Yolaine de Kepper centre between 1981 and September 2011 were included in this retrospective study.

The youngest patient included was born in March 1955, the eldest in 1994.

The AFM center accepts only adult (> age 18) patients. The center AFM is currently a specialized residence (MAS) which hosts as a permanent and as a temporary residence (for periods most often 1 to 3 months). Recruitment of the center during these years was national with regional predominance. Decisions and treatment options including assisted ventilation, tracheotomy or gastrostomy were done for some patients while residing at the center AFM. The choices offered by the referring physicians in the CHU d’Angers as well as the center’s physicians have been validated by the patient himself or by representative persons. For temporary residents, the decision was made in other centers except where respiratory failure occurred during their stay.

Of the 131 patients born between 1955 and 1994 labelled DMD who stayed at the centre, 36 had a confirmed diagnosis (biopsy confirming absence of dystrophin or genetic test) of DMD. Certainty of diagnosis was impossible before 1987, and therefore many patients did not initially have a definitive diagnosis.

In the absence of confirmatory diagnosis, the following criteria were used prior to 1987 to distinguish DMD from other muscular dystrophies and in particular from milder forms of dystrophinopathy like Becker muscular dystrophy: mode of transmission, clinical and paraclinical history compatible with DMD (biopsy, EMG, CPK, early disorders, age of loss of independent walking prior to 13 years, need for assisted ventilation at or before age 26 or death before that date in the
absence of assisted ventilation). Eighty-three patients complying with all the above criteria were included and considered probable DMD patients. Twelve patients born between 1951 and 1972 were not included in the study because they did not comply with at least one criteria or because of lack of sufficient information.

None of the 119 patients in the study received corticosteroid treatment, currently considered as recommended treatment [28].

1.2.2. Statistical analysis

A Kaplan-Meier model was used for survival analysis. Comparison of survival curves was performed by the log-rank (Mantel-Cox) test and the Gehan-Breslow-Wilcoxon test.

1.3. Results

1.3.1. Population

At September 15 2011, 55 patients died, 36 were alive and 28 lost to follow-up.

1.3.2. Change in life expectancy for patients born after 1970

The year 1970 was chosen as cut-off for this analysis because ventilation was progressively introduced at the AFM centre between 1985 and 1990 for patients around 18 years of age.

The median survival for the 76 DMD patients (with or without ventilatory assistance) born after 1970 was 40.95 years and 25.77 years for those born before 1970 (Fig. 1).

Comparison of two survival curves by the log-rank (Mantel-Cox) test and the Gehan-Breslow-Wilcoxon test found a significant difference with $P < 0.0001$.

1.3.3. Change in life expectancy with and without ventilatory assistance

The median survival found by Kaplan-Meier analysis for all DMD patients was 36.23 years (95% CI 37.81–62.7%) for those who received ventilatory assistance and 22.16 for the others (Fig. 2).

A comparison of the two survival curves by the methods of the log-rank (Mantel-Cox) test and the Gehan-Breslow-Wilcoxon test found a significant difference with $P < 0.0001$.

1.3.3.1. Mean age of death. The mean age of death was 21.82 years (standard deviation, SD ± 2.11) for patients without ventilatory support and 28.25 years (SD ± 6.07) for ventilated patients.

1.3.3.2. Age at start of ventilation. The mean age at onset of NIV was 20.09 years (SD ± 4.05) and 21.66 (SD ± 3.72) for tracheotomy ventilation for the 77 tracheotomised patients. The first tracheotomy dates 1981 and the first NIV 1983.

Among the 43 patients born before 1970, the average age of completion of the tracheotomy was 22.22 years. It has not been changed for the 53 patients born between 1970 and 1980 to 22.20 years and decreased surprisingly for 23 patients born after 1980 to 19.81 years. For the latter, 19 of 24 (79%) received NIV or tracheotomy. For those born between 1970 and 1980, 44 of 53 (83%) benefited.

For those born before 1970, they were only 26 of 43 (60%) mainly born in 1965 (Tables 1 and 2).

When tracheotomy followed the initiation of NIV, she followed after 3.48 years (SD ± 2.78) tracheotomy ventilation was 14.34 years.

1.3.4. Life expectancy after onset of tracheotomy ventilation

Life expectancy after tracheotomy was 17.17 years (77 patients) (Fig. 3).

1.3.5. Causes of death

The cause of death was recorded for 37 out of the 55 patients who died (Fig. 4).

Table 1

<table>
<thead>
<tr>
<th>Age at initiation of ventilation (patients born before 1970, from 1970 to 1980 and after 1980).</th>
<th>Patients</th>
<th>Number of patients</th>
<th>Median age at initiation of NIV</th>
<th>Median age at tracheotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>119</td>
<td>20.09</td>
<td>21.66</td>
<td></td>
</tr>
<tr>
<td>Born before 1970</td>
<td>43</td>
<td>20.9</td>
<td>22.22</td>
<td></td>
</tr>
<tr>
<td>Born between 1970 and 1980</td>
<td>53</td>
<td>20.32</td>
<td>22.20</td>
<td></td>
</tr>
<tr>
<td>Born after 1980</td>
<td>23</td>
<td>18.34</td>
<td>19.8</td>
<td></td>
</tr>
</tbody>
</table>

NIV: non-invasive ventilation.
A cardiac origin is suspected in 10 patients (27%) who had documented advanced heart failure and lack of respiratory decompensation. Two additional patients died with cachexia associated with heart failure and one patient from septic shock.

For 25 out of 37 patients (67.5%), death was caused by end-stage respiratory failure, a major congestion or accidents or complications related to ventilatory assistance or tracheotomy. Among these 25 patients, we found six tracheotomy complications (16.2% of all deaths and 24% of respiratory associated deaths). Four patients experienced endotracheal bleeding, a complication of cryotherapy granuloma and one extrusion of tracheotomy. Two subjects died of ventilation interruption (ventilator failure and accidental disconnection).

From 1990, most of the patients had ventilatory assistance. Before 1990, 12 (57%) of the 21 patients died from respiratory-linked complications and only one (4.8%) from cardiac related disease. From 1990, 13 (38%) of the 34 patients died from respiratory-linked complications and eleven (29%) from cardiac related disease and one from septic shock (Fig. 5).

1.4. Biases of the study

Patients younger than 18 were not admitted at the centre, and therefore survival curves should be interpreted from the age of 18 only.

The relatively large number of patients lost to follow-up results in a significant number of events censored in the Kaplan-Meier analysis, and increases the variance of estimated treatment effects. The 95% confidence interval is therefore indicated in the figures.

1.5. Discussion

1.5.1. Prolongation of survival

Associated with a shift from respiratory- to cardiac-related causes of death, mainly due to implementation of ventilatory care, we have observed an important prolongation of survival in our DMD patients. At the opening (1981) of the AFM centre at Saint-Georges-sur-Loire, ventilatory assistance was only exceptionally implemented and only seven DMD patients had been ventilated (four tracheotomy ventilation and three NIV) before 1985. Use of ventilatory assistance grew rapidly to become almost systematic between 1985 and 1990. This evolution explains in our opinion the increase of life expectancy for patients born after 1970.

Results published by rehabilitation centres which did not propose assisted ventilation to DMD patients until the early
2000s can be compared with those obtained at the AFM centre for patients without ventilatory assistance or for those all patients born before 1970. In our study, median survival was 21.6 years for DMD patients born before 1970, and 38% of patients reached age 23. These figures are higher than those published in other studies, but we need to remember that the AFM centre only recruits patients older than 18 years of age, and that therefore mortality before this age in unaccounted for.

Other factors, such as improved nutritional care, spinal arthropdesis and support systematic cardiological contribute to the prolongation of life expectancy.

So Eagle et al. [10] with 100 patients born between 1970 and 1990 highlight the importance of spinal arthropdesis allows ventilation with a life expectancy of only 30 years and 22 years without arthropdesis.

However, no significant extension is found in different studies without assisted ventilation.

In England and Wales [6], utilization of assisted ventilation was low until 1999, and the life expectancy of DMD patients was only 18.5 years. Quasi-absence of ventilatory assistance was also the norm in Holland even after 2000. In centres such as the Mayo Clinic in Rochester, Minnesota, USA where overall patient care improved overtime but where NIV was not systematically put in place, life expectancy of DMD patients born in 1983 was the same as for those born in 1953 with an average age of death of less than 20 years [5].

Calvert and al. [6] found a median age of death of 18 and 18.5 years in 1993 and 1999, respectively, in the context of absence of ventilation. Very recently in 2011, Gordon et al. [14] reported 60% survival at 24 years in the presence of corticosteroid and bisphosphonate treatment with a low ventilation rate.

The need for initiation of assisted ventilation and is now an evidence.

The moment of realization of the tracheotomy or the exclusive pursuit of NIV is however still under debate. Indeed, the breakdown in the first place most often is followed by NIV invasive tracheotomy most often because of an obstruction despite uncontrollable coughing assistance or due to major disturbances or difficulty swallowing to feed. It is a choice that must be made by the patient, if possible outside acute respiratory episod. The patient must understand the possibilities that are offered, complications of the different treatments or abstention.

In NIV, decluttering difficulties is the major drawback that can pose a threat to life person. The weakness of the expiratory muscles leads to inefficiency effect of cough and can be objectified by the “peakflow to cough (PFT)” [18].

When the flow is less than 270 L/minute, coughing becomes ineffective with a threshold of 160 mL/minute of complete ineffectiveness. Manual and instrumental assistance are indispensable in absence of tracheotomy. With tracheotomy, decluttering is possible with endotracheal aspirations.

In NIV when the PFT is less than 270 L/minute, instrumental assistance must be provided quickly in case of congestion or a tracheotomy is often needed quickly.

The larger leaks are sometimes complicated by conjunctivitis and tolerance masks is sometimes poor and can lead to real bedsores. The frequency of chronic rhinitis is also worth mentioning. Difficulties can exist in taking meals with the mouthpiece.

The use of tracheotomy depends of teams and countries with a general tendency to extend the non-invasive ventilation (NIV) necessarily associated with instrumental methods of decluttering like “cough assist”.

Which represents a patient safety, tracheotomy has many disadvantages including the frequency of respiratory infections, associated with increased progressive resistance of germs. It increases bronchial hypersecretion and tracheal lesions [12], sometimes responsible for bleeding (0.7%). Stenoses are present in 3 to 12% of cases and fistulas less than 1% [25]. These complications of tracheotomy were found in the study (16.2% of causes of death) and this is confirmed by various studies [7,26].

Talk perturbation is absent except when it is necessary to set up a cuff (usually only inflated the night) necessary by excessive leaks or flooding continuous saliva.

The increasing dependence with necessity of a possible intervention 24 upon 24 is not just for the tracheotomized patients but also for those with permanent NIV. However, the difficulty of finding a place suitable living is increased with tracheotomy. This one closes access to many centers or homes and forcing some of them to leave home.

Informal surveys conducted at the center as well as data from the literature [1,2,5,22,29] have shown that ventilator assistance and also tracheotomy does not impair the quality of life for patients with DMD despite an important dependence in activities of daily life.

The current study did not aim to recommend either the continuation of the NAV or early tracheotomy.

The current trend of teams, more marked for some is to extend NIV [3,1,13,16]. This trend was not found in the study with no increase in the age of tracheotomy over the years.

The age at completion of tracheotomy in the population studied was relatively early to 21.66 years and followed the NIV of only 3.48 years (SD ± 2.78 years). There was no change in the age at completion of the tracheotomy (that has not changed) over the years. The more systematic use of instrumental aids to decluttering and the generalization of the NIV daytime ventilation should result in an increase in the age of tracheotomy.

We have reviewed the median age of death and increase of survival in other centres were ventilatory assistance was systematically implemented and compared to our study.

Without ventilatory assistance, mean survival of DMD patients after onset of diurnal hypercapnia is 9.7 months.

This hypercapnia leads most of the time to the onset of ventilator assistance. In the current study, life expectancy after tracheotomy for the 77 DMD patients with tracheotomy was 17.17 years and so increased by more than 16 years.

In our study, the median survival (life expectancy) for the 76 DMD patients (with or without ventilatory support) born after 1970 was 40.95 years and 25.77 years for those born before 1970.
Simonds et al. [26] found 85% and 73% survival at 1 and 5 years after onset of ventilatory assistance, respectively.

Kohler et al. [16] published a study of 43 patients aged 5 to 35 years, and reported initiation of NIV at 19.8 years (SD ± 3.9). In this study [17], the probability of survival at 5 and 10 years after initiation of NIV was 82% and 68%, respectively, similar to 84.8% and 62.8% in our study. Moreover, the probability of survival in Kohler et al. was 80% at age 30, with a median survival of 35 years, very similar to that observed at the AFM centre (82.3% survival at age 32).

Bach et al. [4] found a median survival of 30.6 years for DMD patients with ventilatory assistance only through NIV, and Toussaint et al. [28] reported a median survival of 32.5 years in 41 DMD patients likewise treated by NIV.

Ishikawa et al. [15] studied a population of 227 DMD patients from 1964 to 2010 and stratified their patients in three different groups, according to whether patients were without ventilatory assistance, with assistance through tracheotomy or NIV. Median survival was 18.1, 28.9 and 39.6 years, respectively.

Our results (mostly with tracheotomy) are similar to this results with NIV.

1.5.2. Causes of death

In our study, cause of death could be documented only for 37 of 55 DMD patients. Twenty-five of these patients (67.5%) died from respiratory-linked complications and 12 (32%) succumbed from cardiac-related disease isolated or associated related from 1990, most of the patients benefited of ventilatory assistance. So, before 1990, when cause of death could be documented, 92% of the causes of death were respiratory linked and cardiac linked for 8%.

This is also noted in the studies where no systematic ventilatory assistance was provided. Indeed, without ventilatory assistance, respiratory complications were causally linked to death in 90% of cases and only a small proportion of deaths was to cardiomyopathy (10%).

From 1990, causes of death radically changed. 52% of the patients died from respiratory (on diminution) linked cause and 44% from cardiac related cause (on augmentation).

Similar to our situation, Spurney [27] noted an increase in the proportion of cardiac-related deaths (20% of total deaths) following implementation of respiratory care.

Bach et al. [3] found a very high prevalence of cardiac-related (52% of total) deaths and a low prevalence of respiratory-linked deaths (21%) in DMD patients using NIV. Causes of death were unknown in 27% of cases.

1.6. Conclusion

Numerous publications have reported that ventilatory assistance significantly improves survival of DMD patients, as also experienced at the AFM Yolaine de Kepper centre over the past 30 years. The median survival age in these patients now reaches 40 with no impairment of quality of life. Ventilatory assistance must therefore be systematically proposed to all DMD patients.

We observed a significant increase in this 30 years of life expectancy through ventilation with tracheotomy performed fairly early.

Life expectancy after tracheotomy was more than 17 years. So ventilation by tracheotomy represents a safe and effective treatment but associated with the presence of numerous complications related to tracheotomy.

The timing of realization of tracheotomy (not too early but not too late) is crucial.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

2. Version française

La dystrophie musculaire de Duchenne (DMD) est la plus fréquente des dystrophies musculaires. Elle se transmet sur le mode récessif lié au chromosome X et atteint un garçon sur 3500 à la naissance. L’atteinte est liée à l’absence d’une protéine particulière appelée dystrophine dans le myocyte, qui entraine la perte de l’intégrité membranaire suivie par une destruction progressive de la fibre musculaire.

Les signes cliniques commencent à être visibles généralement entre les âges de deux et cinq ans avec apparition progressive de difficultés pour courir, monter les escaliers et la survenue de chutes. Une atteinte cognitive peut être présente dans 30 % des cas.

Le déficit moteur se majore avec réduction de l’autonomie pour les actes simples de la vie journalière. S’alimenter seul devient impossible vers l’âge de 18 ans.

Avant que l’assistance ventilatoire par trachéotomie ou non invasive ne soit proposée, le décès survenait classiquement entre 16,2 et 19 ans, presque toujours avant l’âge de 25 ans [11,23], principalement par insuffisance respiratoire terminale, cause principale de décès.

En effet, la capacité vitale (CV) qui progresse normalement jusqu’à l’âge de neuf à dix ans ralentit après cet âge et décroit de 5 à 10 % par an après 14 ans et, en l’absence de ventilation assistée, le décès survient le plus souvent vers 18 ans [4,11,15,21,23,24].
L’hypercapnie résultant de l’hypoventilation survient dans un premier temps la nuit [20]. A cette période, la CV est habituellement entre 20 et 50 % de la CV théorique et la ventilation non invasive (VNI) n’a pas montré d’effet bénéfique sur la survie [21]. L’apparition d’une hypercapnie diurne suit cette période et sans assistance ventilatoire, l’espérance de vie est inférieure à un an [19].

Ainsi, dans la DMD, les critères de mise en route d’une ventilation sont suivant les équipes :

- soit (Raphael et al., 1994) : une CV inférieure à 20 %, une PaCO2 supérieure à 45 % ou deux poussées d’insuffisance respiratoire aiguë ;
- soit (Toussaint et al., 2008) : une CV inférieure à 680 mL et une pression maximale inspiratoire (MIP) inférieure à 3,5 kPa (prédictif d’hypercapnie diurne) [20].

Progressivement, le temps de ventilation est augmenté dans la journée, le plus souvent avec un embout buccal. La dépendance pour la ventilation est souvent permanente vers 23 ans lorsque la CV atteint 320 mL [15].

Une trachéotomie est proposée en cas de non-faisabilité ou de souhait du patient. Le plus souvent, celle-ci est réalisée en raison d’un encombrement incontrôlable malgré une assistance à la toux ou en raison de troubles majeurs de déglutition ou de difficultés pour s’alimenter.

L’atteinte cardiaque représente l’autre principale cause de décès. Il s’agit d’une cardiomyopathie dilatée qui débute parfois très tôt dès l’âge de cinq ans, devient symptomatique à 15 ans (diagnostic de cardiomyopathie effectué à 14,4 ans (+ 2,3 ans) dans l’étude de Connuck et al. [7]) et quasi systématique après 18 ans. L’évolution de la myocardiopathie n’est pas corrélée avec l’importance de l’atteinte musculaire squelettique ou respiratoire. Les traitements de la myocardiopathie (inhibiteurs de l’enzyme de conversion associés éventuellement aux bétabloquant) sont recommandés dès dix ans [8,9,17]. Les corticoïdes ralentissent également l’évolution de la cardiomyopathie [17].

Le but de l’étude actuelle est de mesurer l’évolution de l’espérance de vie survenue dans les 30 dernières années au centre AFM Yolaine de Kepper (France) où des patients atteints de DMD ont séjourné depuis 1981 de façon temporaire ou permanente. La part de la prise en charge respiratoire qui a débuté dans certains centres à la fin des années 1970, mais de façon plus systématique entre 1985 et 1990 ainsi que les causes de décès ont été également étudiés.

2.2. Patients et méthodes

2.2.1. Patients

Le centre AFM accepte uniquement les patients adultes (> 18 ans). Le centre AFM est actuellement une maison d’accueil spécialisé (MAS) qui accueille des résidents de façon permanente ainsi que des résidents temporaires pour des durées le plus souvent de un à trois mois. Le recrutement du centre pendant ces années a été national avec une prédominance régionale. Les décisions thérapeutiques notamment de ventilation assistée, trachéotomie ou gastrostomie ont été prises pour certains patients alors qu’ils résidaient au centre AFM. Les choix proposés par les médecins référents du CHU d’Angers (réanimateurs et pneumologues) ainsi que par les médecins du centre ont pu être validés par le patient lui-même ou par les personnes représentatives. Pour les résidents temporaires, les décisions ont été prises dans d’autres centres sauf lorsqu’une décompensation respiratoire est survenue lors de leur séjour.

Parmi les 131 patients nés entre 1955 et 1994 ayant un diagnostic de DMD qui ont séjourné au centre, 36 avaient un diagnostic confirmé (biopsie confirmant l’absence de dystrophine et/ou diagnostic génétique). La certitude du diagnostic étant impossible avant 1987, de nombreux patients n’avaient pas initialement de diagnostic confirmé. En l’absence de cette confirmation diagnostique, les critères antérieurs à 1987 ont été retenus pour distinguer la DMD d’autres dystrophies musculaires et en particulier de la dystrophie de Becker qui est une forme moins grave de dystrophinopathie.

Ces critères étaient le mode de transmission, l’histoire clinique et paraclinique compatible avec celui de DMD (biopsie, EMG, CPK, date du début des troubles, âge de perte de la marche autonome ne dépassant pas 13 ans, nécessité d’une ventilation assistée au plus tard à 26 ans ou décès avant cette date si non ventilé). Quatre-vingt-trois patients répondants à tous les critères ci-dessus ont été inclus et considérés comme des patients atteints de DMD probables.

Douze patients nés entre 1951 et 1972 n’ont pas été retenus car ne répondaient pas à au moins un des critères notamment l’âge de perte de la marche, la nécessité d’une ventilation assistée après 26 ans ou l’absence de renseignements suffisants.

Aucun des 119 patients de l’étude n’a bénéficié antérieurement de traitement corticoïde actuellement considéré comme recommandé [24].

2.2.2. Analyse statistique

Les courbes de survie ont été obtenues par la méthode de Kaplan-Meier.

La comparaison des courbes de survie a été réalisée par le Log-Rank (Mantel-Cox) Test ainsi que par le Gehan-Breslow-Wilcoxon test.

2.3. Résultats

2.3.1. Population

Au 15 septembre 2011, 55 patients étaient décédés, 36 en vie et 28 perdues de vue.

2.3.2. Augmentation de l’espérance de vie pour les patients patients nés après 1970

L’année 1970 a été choisie comme un seuil car la ventilation assistée a été plus systématique entre 1985 et 1990 et proposé aux patients atteints de DMD ayant un âge entre 15 et 20 ans.
La médiane de survie (espérance de vie) pour les 76 patients atteints de DMD (avec ou sans assistance ventilatoire) nés à partir de 1970 est de 40,95 ans et de 25,77 ans pour ceux nés avant 1970 (Fig. 1).

Les deux courbes de survie ont une différence significative avec un $p < 0,0001$ par les méthodes du log Rank (Mantel-Cox) et du Grehan-Breslow-Wilcoxon test.

2.3.3. Augmentation de l’espérance de vie avec ventilation assistée

2.3.3.1. La médiane de survie. La médiane de survie (espérance de vie) retrouvée selon les courbes de Kaplan-Meier pour les patients atteints de DMD était de 36,23 ans (95 CI 37,81 %–62,7 %) pour ceux qui ont bénéficié d’une ventilation assistée et de 22,16 ans pour les patients n’en ayant pas bénéficié (Fig. 2).

La comparaison des deux courbes de survie par les méthodes du log Rank (Mantel-Cox) et du Grehan-Breslow-Wilcoxon test retrouvait une différence significative avec un $p < 0,0001$.

2.3.3.2. L’âge moyen du décès. L’âge moyen du décès était de 21,82 ans (écart-type DS ± 2,11) pour les patients sans assistance respiratoire et de 28,25 ans (DS ± 6,07) pour les patients ventilés.

2.3.4. Âge au début de la ventilation

L’âge moyen de début de la VNI (35 patients) était de 20,09 ans (DS ± 4,05) et l’âge de la trachéotomie pour les

Parmi les 43 patients nés avant 1970, la moyenne d’âge de réalisation de la trachéotomie était de 22,22 ans, elle n’a pas été modifiée pour les 53 patients nés entre 1970 et 1980 à 22,20 ans et a diminué de façon assez surprenante pour les 23 patients nés après 1980 à 19,81 ans. Pour ces derniers, 19 sur 24 (79 %) bénéficiaient d’une VNI ou par trachéotomie. Pour ceux nés entre 1970 et 1980, 44 sur 53 (83 %) en bénéficiaient.

Pour ceux nés avant 1970, seulement 26 sur 43 (60 %) principalement nés à partir de 1965 étaient ventilés (Tableaux 1 et 2).

Lorsque la trachéotomie a suivi la mise en route d’une VNI, elle l’a suivie après 3,48 ans (DS ± 2,78).

2.3.5. Espérance de vie après trachéotomie

La médiane de survie après la trachéotomie pour les 77 patients DMD trachéotomisés était de 17,17 ans (Fig. 3).

2.3.6. Causes du décès

La cause du décès a pu être retrouvée pour 37 patients des 55 patients décédés.

Une origine cardiaque a été suspectée pour dix patients (27 %). Cette cause est évoquée en présence d’une insuffisance cardiaque évolutée et en l’absence de décompensation respiratoire. Deux patients sont décédés dans le cadre d’une cachexie associée à une insuffisance cardiaque et un patient d’un choc septique.

Pour 25 des 37 patients (67,5 %), la mort était liée à une insuffisance respiratoire au stade terminal, à un encombrement majeur, à des complications ou accidents dus à la ventilation ou à la trachéotomie. Parmi ces 25 patients, nous avons retrouvé six complications liées à la trachéotomie (16,2 % de tous les décès et 24 % des décès de cause respiratoire). Quatre patients ont présenté une hémorragie endotrachéale, un patient une complication de cryothérapie de granulome et un patient une extrusion de trachéotomie.

Deux patients sont morts d’un accident de ventilation (panne de ventilateur et débranchement accidentel) (Fig. 4).

À partir de 1990, la quasi-totalité des patients a pu bénéficier d’une ventilation assistée. Avant cette date, sur 21 patients décédés, parmi les causes connues de décès, une cause respiratoire était retrouvée dans 12 cas (57 %) et une origine cardiaque pour seulement un patient (4,8 %).
Tableau 2

<table>
<thead>
<tr>
<th>Patients</th>
<th>Nombre de patients</th>
<th>Non ventilés</th>
<th>VNI exclusive</th>
<th>VNI puis trachéotomie</th>
<th>Trachéotomie d’emblée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tous</td>
<td>119</td>
<td>42 (35 %)</td>
<td>12</td>
<td>23</td>
<td>54</td>
</tr>
<tr>
<td>Nés avant 1970</td>
<td>43</td>
<td>17 (40 %)</td>
<td>5</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Nés entre 1970 et 1980</td>
<td>53</td>
<td>9 (17 %)</td>
<td>3</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Nés après 1980</td>
<td>23</td>
<td>4 (17 %)</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

VNI : ventilation non invasive.

À partir de 1990, sur 34 patients, 13 patients (38 %) sont décédés de cause respiratoire et 11 (29 %) de cause cardiaque isolée ou associée et un patient d’un choc septique (Fig. 5).

![Fig. 3. Courbe de survie après trachéotomie pour les patients atteints de dystrophie musculaire de Duchenne (DMD) (avec IC de 95 %).](image)

Les patients de moins de 18 ans n’étant pas admis au centre, les courbes de survie doivent être interprétées à partir de 18 ans uniquement.

Le nombre relativement important de patients perdus de vue et de patients en vie entraîne un nombre significatif de censure dans les courbes de Kaplan-Meier et entraîne une augmentation de l’intervalle de confiance à 95 % qui est ainsi représenté sur les différentes courbes.

2.5. Discussion

2.5.1. Allongement de l’espérance de vie

Nous avons observé une prolongation importante de l’espérance de vie des patients atteints de DMD pendant les 30 dernières années, liée principalement à la mise en route de la ventilation assistée.

Les résultats publiés par les centres qui n’ont pas proposé de ventilation aux patients atteints de DMD jusqu’au début des années 2000 peuvent être comparés à ceux obtenus au centre AFM pour les patients non ventilés ou à ceux des patients DMD nés avant 1970.

Dans notre étude, la médiane de survie pour les patients nés avant 1970 était de 21,6 ans et 38 % des patients atteignaient 23 ans.

L’espérance de vie retrouvée était plus élevée que celles publiées dans les autres études mais il faut se rappeler que le centre AFM n’accepte que les patients atteints de DMD de plus de 18 ans et les décès précédant cet âge n’ont ainsi pas pu être pris en compte.

D’autres facteurs, comme l’amélioration de la prise en charge nutritionnelle, l’arthrodisèse rachidienne et la prise en charge cardiologique systématique contribuent à la prolongation de l’espérance de vie.

Ainsi, Eagle et al. [10] auprès de 100 patients nés entre 1970 et 1990, soulignent l’importance de l’arthrodisèse rachidienne qui permet avec une ventilation assistée une espérance de vie de 30 ans et uniquement de 22 ans sans arthrodisèse.
Cependant, sans ventilation assistée, aucune prolongation importante n’est retrouvée dans les différentes études.

En Angleterre et au Pays de Galle [6], le recours à la ventilation assistée était faible jusqu’en 1999 avec absence d’amélioration de l’espérance de vie des patients DMD qui ne dépassait pas 18,5 ans. Une quasi-absence de ventilation était la norme également en Hollande même après les années 2000.

Les centres comme la Mayo Clinic à Rochester, Minnesota, États-Unis, qui ont amélioré de façon globale la prise en charge mais sans mise en place systématique d’une assistance respiratoire n’ont pas constaté de modification de l’espérance de vie entre les patients atteints de DMD nés en 1983 et ceux nés en 1953 avec une moyenne d’âge de décès inférieure à 20 ans [5].

Pour Calvert et al. (Calvert et al., 2006), l’âge médian de décès était de 18 et 18,5 ans en 1993 et 1999 respectivement, en l’absence de ventilation assistée.

Très récemment, Gordon et al. [14] en 2011 au Canada retrouvaient une espérance de vie très basse avec 60 % de survie à 24 ans avec un traitement par corticoïdes et biphosphonates mais peu de patients ventilés.

Le moment de réalisation de la trachéotomie voire la poursuite exclusive de la VNI fait cependant encore débat. En effet, la ventilation dans un premier temps le plus souvent non invasive est suivie d’une ventilation invasive par trachéotomie le plus souvent en raison d’un encombrement incontrôlable malgré une assistance à la toux ou en raison de troubles majeurs de déglutition ou de difficultés pour s’alimenter. Il s’agit d’un choix qui doit être effectué par le patient, si possible en dehors de l’événement aigu.

En VNI, les difficultés de désencombrement constituent l’inconvénient majeur pouvant faire courir un risque vital à la personne. L’atteinte des muscles inspiratoires entraîne en effet une inefficacité de la toux qui peut être objectivée par le « peakflow à la toux (PFT) » [18].

Lorsque le débit est inférieur à 270 L/minute, la toux devient inefficace avec un seuil à 160 mL/minute d’inefficacité complète. Des moyens manuels et instrumentaux sont indispensables en l’absence de trachéotomie où le désencombrement est possible par aspirations endotrachéales.

En VNI, lorsque le PFT est inférieur à 270 L/minute, une aide instrumentale doit pouvoir être fournie rapidement en cas d’encombrement sinon une trachéotomie est souvene rapidement nécessaire.

Les fuites plus importantes sont parfois compliquées de conjonctivites et la tolérance des masques est parfois médiocre pouvant aboutir à de réelles escarres. La fréquence des rhinites chroniques est également à signaler. Des difficultés peuvent exister pour la prise des repas avec l’embout buccal.

Le recours à la trachéotomie dépend des équipes et des pays avec une tendance générale à prolonger la VNI associée obligatoirement à des méthodes de désencombrement instrumentales de type « cough assist ».

La trachéotomie qui représente une sécurité pour le patient présente cependant de nombreux inconvénients et notamment la fréquence des infections respiratoires qui est accrue associé à une résistance progressive des germes. L’hypersécétion bronchique est majorée, ainsi que les lésions trachéales [12] parfois responsables d’hémorragies (0,7 %). Les sténoses sont présentes dans 3 à 12 % des cas et la présence de fistules dans moins de 1 % [25]. Ces complications de la trachéotomie ont été retrouvées dans l’étude (16,2 % des causes de décès) et cela est confirmé par différentes études [7,26].

Les troubles de la parole sont en revanche absents sauf lorsqu’il y a nécessité de mise en place d’une canule à ballonnet (le plus souvent uniquement gonflé la nuit) rendue nécessaire, soit par des fuites trop importantes, soit par une inondation salivaire permanente.

L’augmentation de la dépendance avec nécessité d’une possible intervention 24 heures sur 24 ne concerne pas que les patients trachéotomisés mais également les patients en VNI en continu. Cependant, les difficultés pour trouver un lieu de vie adapté sont majorées avec la trachéotomie. Celle-ci ferme l’accès à de nombreux centres ou foyers et oblige certains d’entre-eux à quitter le milieu familial.

Des enquêtes informelles réalisées au centre AFM autant que les données de la littérature [1,2,5,22,29] ont montré que la ventilation assistée mais également la trachéotomie permettaient une qualité de vie satisfaisante pour les patients atteints de DMD malgré une dépendance majeure pour les actes de la vie journalière.

L’étude actuelle n’a pas pour objet de recommander la poursuite de la VNI ou la trachéotomie précoce.

La tendance actuelle des équipes, plus marquée pour certains est de prolonger la VNI [3,13,16]. Cette tendance n’a pas été retrouvée dans l’étude avec l’absence d’augmentation de l’âge de trachéotomie au fil des années.

L’âge lors de la réalisation de la trachéotomie pour la population étudiée a été assez précoce vers 21,66 ans et la trachéotomie a suivi la VNI de seulement 3,48 ans (DS ± 2,78 ans). Il n’y a pas eu de modification de l’âge lors de la réalisation de la trachéotomie qui n’a pas évolué au fil des années. Le recours plus systématique à des aides instrumentales au désencombrement et la généralisation de la ventilation diurne à la pipette devraient retarder l’âge de la trachéotomie.

Nous avons comparé les résultats avec ceux obtenus dans les différents centres qui proposent une ventilation assistée et en particulier l’âge médian de décès et l’espérance de vie.

Il faut rappeler que sans assistance ventilatoire, l’espérance de vie est de 9,7 mois après le début de l’hypercapnie diurne. Cette hypercapnie diurne correspond le plus souvent à la mise en route de la ventilation assistée.

Dans l’étude actuelle, l’espérance de vie après trachéotomie pour les 77 patients DMD trachéotomisés était de 17,17 ans soit augmentée de plus de 16 ans.

Dans notre étude, la médiane de survie (espérance de vie) pour les 76 patients atteints de DMD (avec ou sans assistance ventilatoire) nés à partir de 1970 était de 40,95 ans et de 25,77 ans pour ceux nés avant 1970.

Simonds et al. en 1996 [26] notait 85 % de survie un an après le début de la ventilation et 73 % à cinq ans.

Kohler et al. [16] dans une étude auprès de 43 patients de cinq à 35 ans, retrouvaient une mise en route de la ventilation à l’âge de 19,8 ans (DS ± 3,9 ans). La probabilité de survie à
cinquante et dix ans après la mise en route de la ventilation était respectivement de 82 % et 68 % semblables aux 84,8 % et 62,8 % de notre étude.

De plus, la probabilité de survie était de 80 % à l’âge de 30 ans (comparable aux 82,3 % de survie à 32 ans dans notre étude) et une médiane de survie à 35 ans très semblable à celle retrouvée au centre AFM.

Bach et al. [4] retrouvait une médiane de survie de 30,6 ans en VNI exclusive sans trachéotomie et pour Toussaint et al. [28] auprès de 41 patients DMD la médiane de survie était de 32,5 ans en VNI exclusive également.

Ishikawa [15] auprès de 227 patients DMD de 1964 à 2010, retrouvaient des médianes de survie très différentes dans les trois groupes qu’il a différenciés (patients non ventilés, trachéotomisés et en VNI). Celles-ci étaient respectivement de 18,1, 28,9 et 39,6 ans. Le groupe trachéotomie avait une espérance de vie beaucoup plus basse que le groupe VNI. Nos résultats avec trachéotomie se rapprochent davantage du groupe VNI.

2.5.2. Cause du décès

Dans notre étude, la cause du décès a pu être documentée pour seulement 37 de 55 patients décédés. Vingt-cinq de ces patients (67,5 %) sont décédés de cause respiratoire et 12 patients (22 %) d’une cause cardiaque isolée ou associée.

À partir de 1990, la quasi-totalité des patients a pu bénéficier d’une ventilation assistée. Ainsi, avant 1990, pour les patients dont la cause du décès est documentée, une origine respiratoire était retrouvée dans 92 % des cas et une origine cardiaque dans 8 % des cas.

Dans les études antérieures, en absence de ventilation assistée, les causes respiratoires représentaient la cause quasi exclusive de décès (90 % des cas) et seulement une faible part des décès (10 %) était liée à la cardiomyopathie.

À partir de 1990, la situation est totalement modifiée. Cinquante-deux pour cent des patients sont décédés de cause respiratoire (donc en diminution), 44 % de cause cardiaque isolée ou associée (en nette augmentation).

Spurney [27] retrouvait également une augmentation des décès d’origine cardiaque à 20 % après mise en route d’une ventilation assistée.

Bach et al. [3] retrouvait une important nombre de décès d’origine cardiaque (52 % des décès), et une faible quantité d’origine respiratoire (21 % des cas) auprès de patients atteints DMD sous VNI. Vingt-sept pour cent des causes de décès étaient inconnues.

2.6. Conclusion

Différentes publications ont montré que la ventilation assistée augmentait l’espérance de vie des patients atteints de DMD de façon significative. Cela est également retrouvé au centre AFM au cours des 30 dernières années. L’espérance de vie pour ces patients approche les 40 ans avec une qualité de vie qui reste satisfaisante. L’assistance ventilatoire doit ainsi être systématiquement proposée à tous les patients atteints de DMD.

Nous avons observé une augmentation importante en 30 ans de l’espérance de vie grâce à la ventilation avec trachéotomie réalisée de façon assez précoce. L’espérance de vie après trachéotomie était de plus de 17 ans et représente ainsi un traitement efficace et sûr mais il faut signaler la présence de nombreuses complications liées à la trachéotomie et le moment de réalisation de la trachéotomie (pas trop tôt mais pas trop tard) est capital.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References

© 2019 Elsevier Masson SAS. Tous droits réservés. - Document téléchargeé le 01/01/2019 Il est interdit et illégal de diffuser ce document.

