P043-e

English cross-cultural translation and validation of the NM-Score: A system for motor function classification in patients with neuromuscular diseases

C. Vuillerot a, K. G. Meilleur b, M. Jain c, M. Waite d, T. Wu e, J. Dastgir f, S. Donkervoort g, M. Leach h, P. Rippert i, C. Payan j, J. Iwaz k, D. Hamroun m, C. Berard n, I. Poirot o, C. Bonnemann p

a Hospices Civils de Lyon, l’Escale, Hôpital Femme-Mère–Enfant, Aile A1, Bron, France
b National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
c National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
d National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
e Hospices Civils de Lyon, Pôle Information Médicale, Évaluation, Recherche, 69003 Lyon, France
f Assistance publique–Hôpitaux de Paris, Hôpital Pitié-Salpétrière, Université Paris Descartes, 75013 Paris, France
g CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, 69310 Pierre-René, France
h CHU de Montpellier, Hôpital Arnaud-de-Villeneuve, 34000 Montpellier, France

Objective.– To develop an English version of the Neuromuscular-Score (NM-Score).

Methods.– Forty-two patients aged 5- to 19-years-old with a confirmed or suspected diagnosis of congenital muscular dystrophy were enrolled. An English version of the NM-Score in each of the three domains (D1: standing and transfers; D2: axial and proximal motor function; D3: distal motor function) was developed by a 9-expert panel. Its concurrent validity was tested against criterion standards (Brooke, Motor Function Measure, Activlim, Jebsen Test, and myometry). Informant agreement between patient-reported and clinician-reported NM-Score was measured by weighted Kappa.

Results.– Significant correlation coefficients were found between NM-Score and criterion standards, the best correlations occurring with MFM D1 (r = 0.94, P < 0.0001), Activlim (r = 0.895, P < 0.0001) and hip abduction (r = 0.811, P < 0.0001). Informant agreement between clinician- and patient-reported NM-scores was excellent for D1 (k = 0.801, 95% CI 0.701–0.914) but moderate for D2 (k = 0.592, 95% CI 0.412–0.773) and D3 (k = 0.485, 95% CI 0.290–0.680). The correlation coefficients between NM-Score and criterion standards were not significantly different between clinician-reported NM-Score and patient-reported NM-Score.

Discussion.– The English version is a reliable and valid instrument that can be used in clinical practice and research to describe the functional abilities of patients with NM diseases.

http://dx.doi.org/10.1016/j.rehab.2014.03.361

P044-e

Regression of supernumerary upper limb phantom and pain after left complete plexus brachial avulsion using mirror therapy: A single case study

F. Agon a, S. Mateo b, V. Servajeana, G. Rode c

a Hospices Civils de Lyon, service de médecine physique et de réadaptation, Hôpital Henry-Gabrielle, Mouvement et Handicap, 69000 Lyon, France
b Hospices Civils de Lyon, service de médecine physique et de réadaptation, Hôpital Henry-Gabrielle, Mouvement et Handicap, INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Centre de Recherche et d’Innovation sur le Sport, 69000 Lyon, France
c Hospices Civils de Lyon, service de médecine physique et de réadaptation, Hôpital Henry-Gabrielle, Mouvement et Handicap, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team; 69000 Lyon, France

Objective.

To describe the clinical evolution of a patient with chronic phantom limb and pain after left complete plexus brachial avulsion using mirror therapy.

Methods.

– The patient was exposed to mirror intervention consisting in 2 sessions lasting 30 minutes of unilateral movement observation.

Results.

– An isomorphic phantom limb attached to the anesthesic forearm was reported by the patient. A dramatic reduction of hallucinose and pain was reported (100% after the first and 60% after the second) and was maintained 24 h later.

Discussion.

– Chronic hallucinose and algo-hallucinose are due to complete desafferentation. These symptoms were alleviated by mirror therapy, which facilitates the restoration of body image.

Conclusion.

– Mirror therapy constitutes a powerful and useful therapeutic option for disorder of body representation disorders.

Keywords: Mirror therapy; Pain; Deafferentation; Hallusinose; Upper limb

http://dx.doi.org/10.1016/j.rehab.2014.03.363

P045-e

Acquired adult flat foot due to isolated spring (plantar calcaneonavicular) ligament rupture. Case report and state of the art of ultrasonography

M. Cohen a, X. Demondion b, B. Piclet-Legre c, M. Helix-Giordano d, J. M. Coudreuse d

a Clinique Juge, Service de Radiologie, Marseille, France
b Laboratoire d’anatomie, Faculté de Médecine de Lille, Lille, France
c Clinique Juge Marseille, Marseille, France
d Hôpital Salvator, CHU de Marseille, Marseille, France

Objective.

To report a patient with acquired adult flat foot due to isolated spring ligament rupture. The clinical and ultrasonographic features will be described and discussed in the context of the current literature.

Methods.

During football game, a 49-year-old man was tackled on his right foot and initially diagnosed with a medial ankle sprain. A flatfoot deformity, tenderness on the medial aspect of the ankle, ability for single leg tiptoe standing with partial restoration of the medial arch height were suggestive for an isolated SL rupture. Valgus translation of the heel and forefoot abduction indicated SL insufficiency. Ultrasonography revealed abnormal SL while collateral medial ligament and PTT were intact. MRI confirmed an isolated SL rupture.

Results.

– Conservative treatment with orthoses failed to relieve symptoms and patient underwent surgery for SL repair and PTT augmentation. Medial longitudinal arch height was restored and remained stable.

Discussion.

– Isolated SL rupture is rare, more often concomitant with PTT chronic dysfunction. Surgery may be necessary if conservative treatment fails. Status of the SL can be a significant consideration in preoperative planning. Despite anatomic complexity, ultrasound can depict an abnormal spring ligament pattern: hypoechoic, thickened with internal vascularity. In some difficult cases, MRI can be necessary.

Keywords: Spring ligament flatfoot deformity sonography

http://dx.doi.org/10.1016/j.rehab.2014.03.363