SEPs were performed when they were transferred to rehabilitation medicine department. SEPs findings divided into three groups; normal, abnormal and absent response. Berg balance scale(BBS) and functional ambulation category(FAC) at discharge were compared with initial tibial SEP findings by the one-way ANOVA study.

Result.– Thirty-one hemiplegic patients were included. BBS and FAC were significantly different according to the SEP findings (ANOVA, P < .001). Post-hoc analysis showed significant different between normal and absent response in BBS (P < .001) and FAC (P < .001), and between abnormal and absent response in BBS (P = .012) and FAC (P = .019). Functional outcomes of normal response group were better than abnormal group, but there was no statistical significance.

Discussion.– These findings suggest that initial tibial nerve SEP can be a useful biomarker for prognosticating functional outcomes in hemiplegic patients.

http://dx.doi.org/10.1016/j.rehab.2014.03.058

CO69-003-e
Therapeutic effects of positioning in patients with CNS lesion – RCT
H. Pickenbrock a,b,∗, A. Zapf a, D. Dresser c
a Medical School Hannover, Hannover, Germany
b University Medical Center Göttingen, Department Medical Statistics, Germany
c Medical School Hannover, Clinic for Neurology, Department of Movement Disorders, Germany
*Corresponding author.

Keywords: Positioning; Acquired brain lesion; Rehabilitation; pROM; RCT

Introduction.– Positioning severely impaired patients is used as a matter of course, but there is little evidence regarding the effectiveness of positioning. This study compares the effects of conventional positioning (CON) with Positioning in Neutral (PiN) on passive range of motion (pROM) and on comfort.

Material and methods.– In this prospective, multicenter, assessor blinded RCT we enrolled 218 non-ambulatory patients, randomly assigned to PiN (n = 105) or CON (n = 113). Patients were lying in the allocated position for two hours. For primary analysis an analysis of covariance (ANCOVA) with change of pROM of the hips as dependent variable, type of positioning (PiN/CON) as independent variable and baseline measurement as covariate was used.

Results.– The change of pROM of flexion of the hips was significantly higher in the PiN group than in the CON group (P < .001, mean change PiN-CON: 7.35◦, 95% CI = [4.10;10.61]) whereas there were no changes in the CON group. The effects on shoulder pROMs are similar (P < .001). PiN is perceived as substantially more comfortable than CON (P < .001).

Discussion.– Decreased pROM is associated with pain, limited function and delay of rehabilitation. Only PiN showed therapeutic effects on pROM while being perceived as more comfortable.

http://dx.doi.org/10.1016/j.rehab.2014.03.059

CO69-004-e
Post-stroke rehabilitation mobile team: Lessons to be pulled of an experience from Lille

D. Briere a,∗, V. Hamon, J. Netter, B. Pollez, C. Pruvot
a GCS GHICL, service MPBF, filière AVC Lille Flandre Lys, Lomme, France
*Corresponding author.

Keywords: Hospital-home link; Mobile team; Support; Relay

Introduction.– Since “Filière AVC Lille Flandre Lys”’s creation in January 2008, we notice a discontinuity between hospital and town at patient’s release, compared with his care’s and life’s projects.

Observation.– The “ARS” made in April 2012, in “filière AVC”, a mission development called “EM2R”, composed by occupational therapists, speech therapists, neuropsychologists and social workers. This team works in support from acute phase to patient’s life environment.

So we define new objectives: coordinate information, optimize experience’s transfer, purpose and organize relay with all professionals and caregivers who work at patient’s home for them to assure an optimal care’s continuity, inform and form all daily life’s caregivers, improve the service provided in fight against disability in real life’s situation. Since 1 year of functioning, EM2R have supported 60 patients at home, which represent 66% of patients followed in rehabilitation services.

Conclusion.– After more than 1 year, we realized mission’s assessments to highlight determining factors of success and axes of improvement, to contribute to optimize link between hospital and home.

http://dx.doi.org/10.1016/j.rehab.2014.03.060

CO69-005-e
Epidemiological data in length of stay in cerebrovascular accident (CVA) patients
I.A. Tzanos a,c, D. Psillaki , V. Tragoulias , A. Patrelis , E. Stefas , N. Groumas
a National Rehabilitation Centre, Athens, Ilion, Greece
*Corresponding author.

Introduction.– Our purpose was to study epidemiological data in length of stay of CVA patients who were hospitalized in our clinic and correlate with problems revealed during their hospitalization.

Methods.– Three hundred and eleven patients with CVA (197 males and 114 females), from 26 to 82 years old (mean age 54) – 163 with right hemiplegia and 148 with left hemiplegia – were recorded.

Results.– Patients have been referred from neurological and internal medicine departments. The admission’s delay varied from two weeks to three months. The mean time of hospitalization in these patients was correlated with the severity of the CVA, complications, pre-existing pathological status and relatives’ support. The rehabilitation mean time for patients without complications and with good relative support without pre-existing pathological problems independently from age and gender was 10 weeks. With complications it rises to 14–18 weeks. With pre-existing pathological status, it depends on the severity of it. With no relatives’ support, independently from all the other factors we have a delay from two to nine months.

Discussion.– Generally, out of the international standards of length of stay in a rehabilitation clinic one of the main reasons for delay of hospitalization time seems to be the relatives’ environment.

http://dx.doi.org/10.1016/j.rehab.2014.03.061

CO69-006-e
Perinatal arterial ischemic stroke: Guidelines for diagnosis, management and rehabilitation of newborn with a high risk of hemiplegia
C. Vuillerot a,c, M. Chevignard b, T. Debillon c, M. Kossorotoff d, M. Zerat e, B. Hassun f, C. Renaud g, S. Chabrier h,∗

a Centre de Référence national AVC de l’enfant, service de rééducation fonctionnelle pédiatrique, L’escale, hôpital Femme-Mère-Enfant, Bron, France
b Centre de Référence national AVC de l’enfant, service de rééducation des pathologies neurologiques acquises de l’enfant, hôpitaux de St Maurice, France
c Centre de Référence national AVC de l’enfant, service de néonatologie, CHU de Grenoble, France
d Centre de Référence national AVC de l’enfant, service de neuropédiatrie, hôpital Necker, AP–HP, France
e Centre de Référence national AVC de l’enfant, service de neurochirurgie pédiatrique, hôpital Necker, AP–HP, France
f Centre de Référence national AVC de l’enfant, service de radiopédiatrie, centre hospitalier universitaire de Bicêtre, AP–HP, France
g Centre de Référence national AVC de l’enfant, CHU St-Etienne, France
h Centre de Référence national AVC de l’enfant, service de neuropédiatrie, CHU St-Etienne, France
*Corresponding author.