Oral communications

CO55-001-e

Seated Tai chi for patients with non-functional ambulation: A case series

Z. Guo
University of Tennessee Chattanooga, Chattanooga, USA

Introduction.– Non-ambulatory in particular, challenged by lack of access to safe, effective and engaging therapeutic programs after being discharged from rehab program. As a result, many patients tend to engage in physical inactivity that would not only compromise the effort of clinical based therapeutic intervention; it would also delay functional recovery and lead to secondary conditions.

Methods and results.– This paper discusses results of a pilot study exploring the effectiveness of a short form of seated Tai chi program to patients with non-functional ambulation resulted from spinal cord injury, stroke, fibromyalgia and multiple sclerosis. Through the examination of participants’ self-efficacy and their continuing participation in the practice of seated Tai chi program five years after the study, this presentation suggests that seated Tai chi program may be considered as a self-care modality. A short and seated Tai chi program offers unique advantages over in promoting meaningful specifically to patients with ambulatory difficulty. While the patient is seated, less stamina is required and there is no fear of falling or losing one’s balance so the patient is usually much more at ease.

Conclusion.– Since it is short and there are fewer moves to learn, it would significantly facilitate the learning experience and promote patient’s intrinsic motivation to practice.

http://dx.doi.org/10.1016/j.rehab.2014.03.1174

CO55-002-e

Obesity complicated or not by a lipo-edema: Is there any veno-lymphatic drainage due to lower limb oscillations by a KiMachine?

S. Theys a,∗, F. Cadel a, M.E. Aguilar Ferrándiz b, S. Otto c, T. Deltombe a

a CHU Godinne, Yvoir, Belgium
b CHU San Juan, Belgium
c HE LHA, Belgium

∗Corresponding author.

Keywords: Drainage; KiMachine®; Lipo-edema; Plethysmography; Obesity

Objectives.– The goal of this prospective study was to investigate the veno-lymphatic response of a Japanese heel oscillator named KiMachine®.

Methods.– Twenty-one consecutive women were included in this prospective study. The KiMachine® was applied in obesity patients (n = 8; mean BMI 32 kg/m²) and lipo-edematosus ones (n = 13; mean BMI: 32.7 kg/m²).

Results.– Both describe heavy legs. The evaluation of the veno-lymphatic drainage was carried out by plethysmography, the mercury gauge placed round the calf. No lower limb had a varicose syndrome (%ΔV 60 moy = 2.9 ± 0.2) or a post-thrombotic one (%ΔV moy = 6 ± 2). Over the 16 min of oscillations, the relative variation of volume was 0.0% 8V/min Thus, there was no veno-lymphatic drainage improvement for both groups. The very modest response may be the response to the - sole - postural drainage of the lower limbs (heel at 20 cm above the level of the bed). The results lead us to conclude that a session of KiMachine®, leads to no improvement of venolymphatic drainage for both fat persons and patients suffering from lipo-edema.

Conclusion.– This confirms other studies that showed no venous or lymphatic response too at the calf in case of venous stasis, chronic venous insufficiency, phlebo-edema or lympho-edema.

http://dx.doi.org/10.1016/j.rehab.2014.03.1175

CO55-003-e

The effects of localised temperature changes on lower limb function and neuromuscular properties in people with hereditary spastic paraparesis

A. Denton
Plymouth University, Plymouth, United Kingdom

Keywords: Hereditary spastic paraparesis; Temperature; Function

People with hereditary spastic paraparesis (pwHSP) report that walking ability and limb stiffness is worse in cold weather. The self-reported most affected lower leg of PwHSP (n = 22) and matched controls (n = 19) was cooled (7°C) or warmed (37°C) on separate occasions. Functional, neurophysiological and temperature measures were recorded at baseline and after 30 minutes. At baseline pwHSP had significantly increased walking and foot tap times; higher passive and stretch-evoked stiffness, lower maximal and rate of rise of force generation and a prolonged central motor conduction time. In both groups cooling led to increased walking and foot tap times; higher passive and stretch-evoked stiffness, lower maximal and rate of rise of force generation and a prolonged central motor conduction time. In both groups cooling led to increased walking and foot tap times; higher passive and stretch-evoked stiffness, lower maximal and rate of rise of force generation and a prolonged central motor conduction time. In both groups cooling led to increased walking and foot tap times; higher passive and stretch-evoked stiffness, lower maximal and rate of rise of force generation and a prolonged central motor conduction time.