Osteoarthritis

Oral communications

CO30-001-e
Update on Physical and Rehabilitation Medicine management of osteoarthritis
E.M. Ilieva
Department of Physical and Rehabilitation Medicine, Medical University of Plovdiv, Plovdiv, Sweden

Keywords: Osteoarthritis; Evidence-based; Physical and rehabilitation medicine interventions

Osteoarthritis (OA) is the most common joint disorder and the major cause of chronic musculoskeletal pain and mobility disability in elderly populations. The prediction is that it is going to be the fourth leading cause of disability by the year 2020. The goal of the Physical and Rehabilitation Medicine (PRM) management of osteoarthritis is to reduce the impact of OA on the individual by reducing pain and improving function, activities and participation.

The optimal management requires the combination of both pharmacological and non-pharmacological interventions. The most recent guidelines and meta-analysis of randomized control trials indicate good level of evidence about the effectiveness of PRM interventions in OA: high level of evidence about education, weight reduction and exercise and growing evidence about the effectiveness of physical modalities.

The demonstrated effectiveness of a large number of PRM interventions and evidence based recommendations for PRM interventions enhance the role of PRM specialists in providing management of OA.

Further reading

http://dx.doi.org/10.1016/j.rehab.2014.03.129

CO30-002-e
Effects of low-intensity focused ultrasound on cartilage and synovium in experimental model of osteoarthritis of rabbits
W. Pu1,*, L. Chuan1, Y. Xiaotian1, H. Chengqi2, Z. Yujing2, W. Xiaofer1
1 Department of Rehabilitation Medicine/Key Laboratory of Rehabilitation Medicine in Sichuan, West China Hospital, Sichuan University, Chengdu, China
2 Center of Rehabilitation Medicine, West China Hospital of Sichuan University, China
*Corresponding author.

Keywords: Osteoarthritis; Low-intensity focused ultrasound; Synovitis; Cartilage

Objective.— To analyze the effects of low-intensity focused ultrasound (LIFUS) on cartilage and synovium of knee joints with osteoarthritis (OA) in rabbits.

Methods.— The LIFUS group and the ACLT group received ACLT surgery. Eight weeks after surgery, the LIFUS group was treated with low-intensity focused ultrasound (300 mW/cm², 50% duty cycle, 1.5 MHz, 30s per location, 6 locations per session, 5 sessions to 15 min daily, 4 weeks). The effects were evaluated by gross morphology, histology, ELISA kits and gene expression analysis.

Results.— The damage of cartilage and synovium in LIFUS group were less than that in animals in ACLT. The levels of IL-1β, TNF-α and PGE2 in synovial fluids of animals in LPFUG were lower than those in ACLT group animals. The mRNA expression of MMP-1, MMP-3, MMP-13 in cartilage and synovium decreased significantly in the LIFUS group and that of TIMP-1 increased significantly in the LIFUS compared with ACLT.

Conclusion.— The study suggests that LIFUS may protect against cartilage degradation and synovitis rabbits with OA, which regulate MMP-1, MMP-3, MMP-13, TIMP-1, IL-1β, TNF-α and PGE2 gene expression in the cartilage and synovium.

http://dx.doi.org/10.1016/j.rehab.2014.03.130

CO30-003-e
Evaluation of the improvement of life quality in patients with unicompartimental femoro-tibial gonarthrosis appareled with a discharging orthesis
H. Collado1,*, L. Dejean2, S. Parratte3, V. Douay4, J.N. Argenson5
1 Centre Phocea, CRF la Bourbonne, CHU de Marseille, IML Sainte-Marguerite, Marseille, France
2 Lagarrigue Orthopédie, France
3 Pôle appareil locomoteur; hôpital St-Marguerite, CHU de Marseille, IML Sainte-Marguerite, France
*Corresponding author.

Keywords: Femoro-tibial gonarthrosis; GII Ossür; Unicompartimental discharging orthesis; KOOS

Aim.— To evaluate the improvement of life quality on patients appareled with a discharging orthesis (Ossür GII).

Material and methods.— Thirty patients were included in this prospective study. Average age of the patients was 56.4 years and average BMI was 28 kg. Orthesis used has articulated three-point system with valgusing constraints made after virtual molding by optic scanner (fast scan) then with an acquisitioned data