Dispositional optimism improves outcome in Parkinson’s disease rehabilitation
A. Gison, V. Dall’armi, V. Donati, F. Rizza*, S. Giaquinto
IRCCS San Raffaele Pisana, Rome, Italy
*Corresponding author.

Background. – The role of Dispositional Optimism (DO) in the field of Parkinson’s disease (PD) rehabilitation has not been assessed.

Methods. – Fifty-eight PD patients completed the Revised Life Orientation Test (LOT-R) for Optimism, the WHO-5 scale for quality of life (QoL), the Hospital Anxiety and Depression Scale (HADS) test for emotional distress, and the Barthel scale for disability and were assessed using disease stage and severity measures (UPDRS). Correlations and multivariate regressions analyses compared Optimism with the health-related variables.

Results. – A higher level of DO at admission was associated with less severe disease, better QoL, and lower emotional distress, but not with level of disability. The level of DO did not change after rehabilitation, while anxiety was significantly reduced especially in those with lower LOT-R and high HADS. The Barthel scale significantly improved independently from the level of DO.

Conclusion. – PD patients with higher DO generally had better QoL, clinical and psychological performances. Therefore, personality traits should be considered in PD because they can influence outcome. DO is predictive of Quality of life and anxiety levels both at admission and after 4 months at time of discharge. DO and Depression scores are unchanged by the rehabilitative intervention.

http://dx.doi.org/10.1016/j.rehab.2014.03.1218

A review on tremor quantification methods—Toward rhythmicity measurements?
I.M. Albertson*, E. Hutin, V. Mardale, J.-M. Gracies
Laboratoire Analyse et Restauration du Mouvement, Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri-Mondor, Université Paris-Est Créteil, Créteil, France
*Corresponding author.

Keywords: Tremor quantification methods; Rhythmicity; Diagnosis; Clinical categorization

Tremor is characterized by involuntary, oscillatory motions of a body part, due to reciprocal antagonistic muscle activations. The two main tremor types are rest
tremor (tremor maximal during muscle rest) and activity tremor (tremor occurring through voluntary muscle activity). The former is most commonly caused by idiopathic Parkinson's disease and the latter is most commonly produced by delayed antagonistic coactivation—“hypermetric” tremors—in conditions such as essential (ET) and other forms of cerebellar tremors [1]. In the absence of biologic markers, diagnosis is based on clinical categorization, with frequent misdiagnosis [2,3].

This review describes tremor quantification methods, as potential means to specify diagnosis. Tremor has been classically recorded using accelerometry and electromyography (EMG) [4]. Frequency ranges overlap between rest tremor (3–6 Hz) and ET (4–8 Hz) [4]. While EMG tremor peak power/total power ratios may reflect tremor rhythmicity, further research is needed to assess the role of tremor rhythmicity quantification in differential diagnosis.

References

http://dx.doi.org/10.1016/j.rehab.2014.03.1220

P409-e

Measurements of smoothness might help distinguish Parkinson’s disease from other bradykinesia-inducing disorders
CHU, Créteil, France
*Corresponding author.

Keywords: Parkinson; Bradykinesia; Smoothness; Jerk metric

Background.– While often considered a “key symptom”, bradykinesia is not specific of Parkinson’s disease (PD), which leads to an unacceptable rate of diagnostic errors in clinical-pathological studies. Methods.– Eight PD patients and 12 healthy subjects performed alternating, maximal speed, small and large elbow flexion-extension movements. Six controls also matched the average speed of PD patients using a metronome. From angular displacement, we derived speed, acceleration, jerk and the power spectrum of acceleration frequencies. Acceleration variability was evaluated using the normalized average rectified jerk (NARJ) and the fast-frequency to movement-frequency (FF/MF) ratio for large and small movements. Results.– NARJ in PD was 151 ± 14% of speed-matched controls (P = 0.004; pairwise P = 0.051) for large movements and 139 ± 11% of speed-matched controls (P = 0.012; pairwise P = 0.067) for small movements. FF/MF ratio in PD was 277 ± 45% of controls (P = 0.032; pairwise P = 0.028) for large movements and 613 ± 73% of controls and 246 ± 29% of speed-matched controls (P < 0.001; pairwise P < 0.001, P < 0.001 respectively) for small movements. Time since diagnosis predicted NARJ (P < 0.05) and FF/MF ratio (P < 0.01) for large and small movements.

Conclusion.– NARJ and FF/MF ratio evaluated movement smoothness by quantifying acceleration profile irregularity, distinguished parkinsonian from voluntary slowness and correlated with time since diagnosis. They are candidate physiological markers of PD.

http://dx.doi.org/10.1016/j.rehab.2014.03.1221

P410-e

Rehabilitation program for camptocormia and postural instability in Parkinson’s disease
R.G. Bellomo*, G. Barassi†*, L. Di Pancrazio*, C. Visciano†, R. Saggini†
†Postgraduate School in Physical and Rehabilitation Medicine “G. d’Annunzio”, University Chieti, Chieti Scalo, Italy
‡Faculty of physiotherapy “G. d’Annunzio”, University, Chieti, Italy
§Tor Vergata University, Rome, Italy
*University, Chieti, Italy
*Corresponding author.

Keywords: Parkinson; Postural system; Vibratory therapy

Background.– Camptocormia (CC) is characterized by an abnormal posture with involuntary forward flexion of the trunk, which appears in erect position, increases during prolonged standing or walking, and abates in supine position. CC increases postural instability and risk of falling. Methods.– Ten randomly selected PD patients underwent dynamic antigravity postural system (SPAD) and high-intensity focused vibratory system (VISS) treatments, 3 sessions/week for 2 months. Results.– The rehabilitation program was associated with improved balance while walking. Further reading


http://dx.doi.org/10.1016/j.rehab.2014.03.1222