(77.2%), professional activity (70.8%), walking (66.5%), self-image (63.5%) and family life (59.4%).

Discussion.– The results assist in better understanding patient experience, needs and profiles. This innovative survey is a first important step to better recognize osteoarthritis as experienced by patients.

http://dx.doi.org/10.1016/j.rehab.2014.03.134

Posters

P192-e

Effect of low-level laser therapy on joint short-term and long-term pain, synovitis, anabolic and catabolic factors in cartilage of rabbits’ progressive osteoarthritis induced by ACLT

W. Pu, L. Chuan, Y. Xiaotian, H. Chengqi

Center of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China

Keywords: Osteoarthritis; Catabolic factors; Anabolic factors; Synovitis; Low level laser therapy

To investigate the effect of low-level laser therapy on joint short-term and long-term pain, synovitis, anabolic and catabolic factors in cartilage of a progressive rabbit OA model induced by ACLT. 72 New Zealand White rabbits were randomly assigned into 2 groups (ACLT and LLLT group). All rabbits received ACLT surgery and were treated 2, 4, 8, 12 weeks after surgery, with 12 rabbits in each study period being tested. LLLT is a helium-neon (He-Ne) laser (810 nm) of 13 J/cm², 3 times a week. Pain was tested by weight-bearing asymmetry. Synovitis was assessed by histology. Cartilage was evaluated by gross morphology, histology and gene expression analysis of anabolic and catabolic factors. Results showed that at least 6 week intermittent irradiation of LLLT could relief knee pain, control synovium inflammation, could decrease cartilage of medical femoral condyle damage and could decrease production of IL-1β, iNOS and MMP-3 and could slow down lose of TIMP-1. 8 weeks LLLT treatment could slow down lose of collagen II and TGF-β. The study suggests that LLLT plays a protective role against cartilage degradation and synovitis in rabbits with progressive OA, which could be achieved through the regulation of catabolic and anabolic factors in cartilage.

http://dx.doi.org/10.1016/j.rehab.2014.03.135

P193-e

Effects of extracorporeal shock wave therapy on cartilage protection and subchondral bone remodeling in rabbits osteoarthritis induced by ACLT

W. Pu a, Z. Yujing b, W. Xiaofei b, Y. Xiaotian b, H. Chengqi b, L. Chuan a

a Department of rehabilitation medicine, West China Hospital, Sichuan University, Chengdu, China
b Center of Rehabilitation Medicine, West China Hospital of Sichuan University, China

Keywords: Osteoarthritis; Extracorporeal Shock Wave Therapy; Cartilage Protection; Subchondral Bone

To investigate the effects of ESWT on cartilage protection and subchondral bone remodeling in rabbits osteoarthritis. Twenty-four rabbits were divided into two groups: ACLT group and ESWT group. Rabbits in two groups received ACLT to establish the knee OA model. Rabbits from ESWT + ACLT group received ESWT (Intensity of frequency: 1.6 ba, Frequency 5 Hz, 1200 shock, 3 times per week, total 6 times in 4 weeks). Histological observation of rabbit articular cartilage; the bone mineral density was measured. The bone histomorphometry analysis was done in subchondral bone of femoral and tibial. IL-1β, TNF-α and NO was detected by ELISA. RT-PCR was used to analyze MMP-1, MMP-3, MMP-13 and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group were significantly lower than that in ACLT group. The BMD of distal femora and tibia was significantly lower than that in ESWT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in ESWT group was significantly higher than that in ACLT group. ESWT could protect cartilage damage and subcondral sclerosis by regulating MMP-1, MMP-3 and TIMP-1 in cartilage and modulating subchondral bone metabolism.

http://dx.doi.org/10.1016/j.rehab.2014.03.136

P194-e

Effects of whole body vibration on structural and functional remodeling of subchondral bone in osteoarthritis of rabbits at early stage

W. Pu a, b, W. Xiaofei a, b, L. Chuan a, Y. Xiaotian a, b, Z. Yujing a, H. Chengqi a

a Department of rehabilitation medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
b Center of Rehabilitation Medicine, West China Hospital of Sichuan University, China

*Corresponding author.

Keywords: Osteoarthritis; Subchondral bone; Whole body vibration; Structural remodeling; Functional remodeling

Objective.– To investigate the effects of whole body vibration (WBV) on structural and functional remodeling of subchondral bone in early osteoarthritis (OA) rabbits induced by anterior cruciate ligament transection (ACLT).

Methods.– Twenty-four adult rabbits were randomly divided into two groups: ACLT group and WBVT + ACLT group. Rabbits in two groups received ACLT to establish the knee OA model. Rabbits from WBVT + ACLT group received WBVT (Intensity of frequency: 40 Hz, Amplitude of vibration: 2–4 mm, Treatment time: 40 min/d, Duration: 4w). After intervention, the left femur and tibia of two groups were placed in Micro-CT scanning system. Using three-dimensional reconstruction Micview V2.1.2 and ABA analysis software to analyze bone of the femoral condyle and tibial bone volume fraction (BVF), trabecular thickness (TbTh), trabecular spacing (TbSp), trabecular number (TbN), volumetric BMD, tissue BMD. Geomagic Studio 11.0 software was used to translate modulus (EM), the reaction force (RF) and average Von Miss Stress of femoral condyle and tibial plateau.

Results.– BVF, TbN, Tb.Th, EM, RF, VFM, VBMD and tBMD of distal femur and tibia were significantly higher than that in ESWT + ACLT group (P < 0.05). Tb.Sp of distal femur and tibia were significantly lower than that in ESWT + ACLT group (P < 0.05). ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone sedration. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in cartilage. Histological assessments of MFC in ESWT group was significantly lower than that in ACLT group. ESWT decreased the trabecular bone relative volume, trabecular bone thickness and increased bone seraction. MMP-1 and MMP-3 in ESWT group was significantly lower and TIMP-1 in ESWT group was significantly higher than that in ACLT group. ESWT could protect cartilage damage and subcondral sclerosis by regulating MMP-1, MMP-3 and TIMP-1 in cartilage and modulating subchondral bone metabolism.

http://dx.doi.org/10.1016/j.rehab.2014.03.136

P195-e

Effect of extracorporeal shock wave therapy on knee osteoarthritis

S.R. Yoon a, b, J.H. Kim a, b

a Department of Rehabilitation Medicine, Gwangju Veterans Hospital, Gwangju Metropolitan city, South Korea
b Department of Rehabilitation Medicine, Gwangju Veterans Hospital, South Korea

Keywords: Knee osteoarthritis; Extracorporeal shock wave therapy; Functional outcome

Introduction.– Knee osteoarthritis (OA) is the most common type of arthritis and a major cause of morbidity and disability. Extracorporeal shock wave therapy (ESWT) has been found to improve motor dysfunction and reduce pain in OA in animals.

http://dx.doi.org/10.1016/j.rehab.2014.03.137