ential of augmented auditory feedback as a means to guide movement performance during training (Knowledge of Performance) and not, as is usually done, simply to signal the success of the trial (Knowledge of Results).

Material and methods. Sonification of arm movement can provide patients with auditory feedback relative to the ongoing direction of the movement, coordination between shoulder and elbow movement and/or motion smoothness. This implies the on line recording of the movement and quantifying of the related impairment in order to generate feedback which stimulates appropriate audio-motor coupling.

Results. We present a literature review of previous pilot studies of sonification for motor rehabilitation and our current exploration involving different types of sonification and musical metaphors usable in rehabilitation (including source-filters, concatenative/granular synthesis and physical model sound synthesis).

Conclusion. The perspective of sonification for rehabilitation will be discussed.

http://dx.doi.org/10.1016/j.rehab.2014.03.015

Upper arm of stroke patients: From kinematics recording to rehabilitation

Chamber

CHRU Montpellier, Montpellier, France
Euromov, Université Montpellier 1, France
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), France
CHU de Nîmes, France

***Corresponding author.**

Keywords: Stroke; Upper arm; Kinematics analysis; Rehabilitation; Video games

Objectives. Kinematics analysis allows quantitative and qualitative assessment of motor function of the upper limb. This method allows the recording of sensori-motor markers that can be used in rehabilitation to adapt the difficulty of the exercises applied to patients after stroke.

Patients and methods. Three successive studies conducted between 2011 and 2013 will be summarized. These studies rely on kinematics motion analysis through electromagnetic sensors.

Results. A first study of 13 hemiplegic patients in the initial phase of recovery has established the correlation between kinematics parameters and clinical scores. A second study conducted with 13 hemiparetic subjects and 12 healthy controls aimed to measure the anisotropy of the peri-personal space during pointing tasks. A third preliminary study focused on the interest of the use of kinematics data acquired during a video game session in seven stroke patients, in order to design difficulty self-adaptation software modules to automatically upgrade the difficulty of the game.

Discussion. These results confirm the importance of translational research involving researchers in the field of motor control and rehabilitation professionals.

http://dx.doi.org/10.1016/j.rehab.2014.03.016