Original article

Relation between self-image score of SRS-22 with deformity measures in female adolescent idiopathic scoliosis patients

L. Wang, Y.P. Wang *, B. Yu, J.G. Zhang, J.X. Shen, G.X. Qiu, Y. Li
Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan-Hutong, Beijing, 100730, China

ARTICLE INFO

Article history:
Accepted 25 June 2014

Keywords:
Deformity
Self-image
Correlation
Adolescent idiopathic scoliosis
SRS-22

ABSTRACT

Background: Adolescent idiopathic scoliosis (AIS) is a pathology which affects the individual’s functioning in the widely understood physical, psychic, and social aspects. More attention should be paid to patients’ perception of self-image when evaluating the spine deformity. The present retrospective study evaluated the associations between the deformity measures and self-image score as determined by the SRS-22 questionnaire in Chinese female AIS patients.

Hypothesis: The self-image score correlates significantly with deformity measures. The location of main curve apex and the number of curve could affect the self-image score.

Materials and methods: We retrospectively reviewed the records of 202 female patients, collected data on patient’s age, body mass index, radiographic and physical measures and self-image score of SRS-22 questionnaire. According to the location of main curve apex and the number of curve, the patients were divided to different subgroups. Correlations between deformity measures and self-image score of different groups were evaluated by the Spearman correlation test.

Results: The self-image score correlated negatively with the main Cobb angle, apical vertebral translation (AVT), and razor hump height. There is no significant difference of self-image score between thoracic curve (TC) and thoracolumbar curve (TL/LC) subgroups. And the self-image scores of one-curve, two-curve and three-curve subgroups are similar.

Discussion: For Chinese female AIS patients in our study, self-image was found to correlate negatively with the main Cobb angle, AVT and razor hump height. And the location of scoliosis apex and the number of curve are not influencing factors of self-image perception.

Level of evidence: Level IV, retrospective study.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Adolescent idiopathic scoliosis (AIS) is a pathology which affects the individual’s functioning in the widely understood physical, psychic, and social aspects. It has been widely recognized that more attention should be paid to the Health Related Quality of Life (HRQOL) in patients with scoliosis when evaluating the spine deformity [1,2].

The Scoliosis Research Society-22 (SRS-22) questionnaire is a widely accepted questionnaire used to assess the HRQOL for scoliosis patients. Self-image is a conceptual image, a part of the self-concept, and it involves attitudes, experiences pertaining to the body, abilities, and issues of physical power as well as notions about masculinity and femininity [3]. Organic diseases that affect the body structure can alter the self-image and reactions to such alterations are influenced by patterns of development as well as by family and cultural attitudes. Research has demonstrated that body disfigurement, which can be seen in AIS, can have a consistent negative effect on the development of an individual’s body image. This, in turn, can additionally result in decreased self-esteem and social confidence along with increased anxiety, depression and stress [4].

Physical deformities of AIS often include rib and scapular prominences, asymmetry in shoulder height, chest wall deformity, and shifts of the trunk and trunk deformity [5]. Thus, one of the most important goals of surgery is to improve physical appearance and prevent future deformity. From the patients’ and parents’ perspectives, feelings about appearance may play a considerable role in determining their willingness to undergo surgery.

The purpose of our current study was to further investigate the relationship between radiographic or physical parameters and patient-reported self-image outcome as determined by their responses to the SRS-22 questionnaire among the Chinese females.
with AIS. Furthermore, we hypothesized that the location of scoliosis apex and the number of curve could affect the self-image score.

2. Materials and methods

2.1. Patients

This is a retrospective study of patients from a single-center. We included data from the Chinese patients who first visited our orthopedic center and completed the SRS-22 self-administered questionnaire from May 2010 through December 2012. A total of 202 cases met our inclusion criteria: female, 10 to 18 years old with the AIS diagnosis. The following exclusion criteria were applied: male, combined with sagittal kyphosis or lordosis deformity, history of trauma or corrective surgery, having incomplete clinical and radiographic and SRS-22 questionnaire data. Ethical approval was provided by the local health ethics review board.

2.2. Assessment

All had full spine standing posterior-anterior preoperative spine deformity radiographs. The Cobb angles of all the curves, Risser sign, apical vertebral rotation (AVR), apical vertebral translation (AVT), shoulder height of right-left difference and trunk shift were measured and recorded from the preoperative radiographs. Physical measure of razor hump height, as well as height and weight were collected.

All the radiographic and physical parameters were measured according to the guideline of Scoliosis Research Society (SRS) Terminology Committee and Working Group [6]. Apical vertebral rotation is defined as the rotation degree of apical vertebra and is assessed using the method of Nash and Moe, which is used frequently in clinical practice as an easy and accessible estimate of vertebral rotation. Trunk shift measures the lateral horizontal distance of the C-7 midpoint from the central sacral line in the coronal plane of the X-ray. Shoulder height difference measures the height difference between the horizontal lines that pass through the highest point of each clavicle on the posterior-anterior X-ray. BMI (kg/m²) was calculated as weight divided by the square of the height in meters.

According to the apex of main curve, we divided the patients into two subgroups: thoracic curve group (TC, apex: T2–T11/12) and thoracolumbar/lumbar curve group (TL/LC, apex: T12–L4). Differences of the deformity measures and self-image score of SRS-22 between the two groups and the correlation analyses between deformity measures with self-image score of each group were calculated.

Then, according to the number of scoliosis curve, we divided all the cases to three subgroups: one-curve group, two-curve group and three-curve group. The differences of all the parameters among all the three groups were also evaluated.

The SRS-22 disease-specific HRQOL questionnaire is self-administered in 2 to 3 minutes. In this study, only the score of self-image domain was analyzed. The domain of self-image contains 5 questions and the score calculation was done as reported by Asher et al. [7].

2.3. Statistics

Means and standard deviations were calculated for age, body mass index (BMI), all radiographic and physical measures and for the self-image domain score of SRS-22 questionnaire. Differences of parameters between TC and TL/LC group were determined by the Independent-Sample Test. Differences of parameters among one-curve, two-curve and three-curve group were determined by the Anova analysis. The Spearman correlation coefficient was calculated to identify associations between the deformity measures and the self-image domain score of SRS-22 questionnaire. P ≤ 0.05 was considered as statistically significant. Statistical measures were performed using Statistical Package for Social Science (SPSS, 19.0).

3. Results

3.1. All the cases

Means and standard deviations of age, BMI, radiographic and physical deformity measures, and self-image score of SRS-22 questionnaire are reported in Table 1. For all the 202 patients, a significant negative correlation, as indicated by Spearman correlation coefficient, was found between the self-image domain score of SRS-22 questionnaire and the main Cobb angle (rho = -0.395, P < 0.001), AVT (rho = -0.290, P < 0.001), and razor hump height (rho = -0.277, P = 0.034). Other measures, including Risser sign, AVR, trunk shift and shoulder height difference were not significantly correlated with the self-image score.

The correlation analyses were also done between various radiographic and physical measures of all the AIS patients in the study. Only the razor hump height correlated significantly with the main Cobb angle (rho = 0.378, P < 0.001) and AVT (rho = 0.337, P < 0.001). Among the radiographic measures, the significant positive correlations were only found between the main Cobb angle and AVR (rho = 0.217, P = 0.001), and between the main Cobb angle and AVT (rho = 0.472, P < 0.001).

Then, the correlations of the age and BMI with self-image score were also analyzed. No significant correlation was observed between the age and self-image (rho = 0.046, P = 0.513), BMI and self-image (rho = -0.06, P = 0.936) in the study.

3.2. TC group versus TL/LC group

The description of patients’ data of both TC and TL/LC subgroups are presented in Table 1. There were 123 TC and 79 TL/LC. Through
the Independent-Sample T test, there is no significant difference between the two groups in age, BMI, all the deformity measures and self-image score. For both groups, a significant negative correlation was found between the self-image score and the main Cobb angle, AVT and razor hump height. The self-image score was not found correlated with other deformity measures. The results of correlation analysis are shown in Table 2.

3.3. One-curve group versus two-curve group versus three-curve group

The basic data of all collected measures of all three subgroups are presented in Table 3. There were 42 cases in one-curve group, 102 cases in two-curve group and 58 cases in three-curve group. Through the Anova analysis, there is no significant difference between the three groups in age, BMI, all the deformity measures and self-image score. For the three groups, the correlation coefficient between the self-image score and the main Cobb angle were −0.414, −0.362, −0.395 respectively with P < 0.05.

4. Discussion

Idiopathic scoliosis is a deformity associated with structural deformity of the spine and is characterized by lateral curvature and vertebral rotation which push the ribs on the convex side of the curve. In general, the severity of scoliosis is indicated by some deformity parameters. However, this is not often the patient’s primary concern [8]. Patients as well as their parents and peers visualize the scoliosis deformity as a body image disturbance. Adolescents with scoliosis are more likely to be dissatisfied with their appearance and fear that their bodies are developing abnormally than adolescents without scoliosis [9]. The negative effect of spinal deformity on perceived self-image and appearance appears to be the predominant clinical symptom and cause for treatment in AIS.

Upon the above concerns, we designed our study to gain insights into how deformity measures influence Chinese female AIS patients’ perception of self-image as their own response to a disease-specific HRQOL questionnaire, namely the SRS-22 questionnaire. The deformity parameters were measured from the X-ray and body surface. The simplified Chinese version of the SRS-22 questionnaire used in the study was re-evaluated by a multicenter study in mainland China, which showed good internal consistency and satisfactory test-retest reproducibility and could be useful for clinical evaluation of Chinese adolescents with scoliosis [10].

As for the correlation between deformity measures and self-image, there are different views. Parent et al. indicated that self-image is the only domain of the SRS-22 that is related to curve-severity [11]. Previous studies also demonstrated the positive association between deformity measures and the self-image domain [1,12]. Whereas, Smith et al. indicated that radiographic and physical measures of deformity do not correlate well with patients’ and parents’ perceptions of appearance [13]. Theologis et al. reported that the Cobb angle and lateral asymmetry measured from radiographs, both representative of spinal deformity in the coronal plane, showed poor correlation with cosmetic spinal scores from ratings of clinical photographs by 10 non-medical judges [14].

In our study, through the correlation analysis, self-image was found to correlate negatively with the main Cobb angle, AVT and razor hump height in all 202 female AIS patients. From common sense, razor hump of body appearance easily cause poor self-image perception, which was approved by our research. The similar relationships were also found for TC group and TL/LC group respectively.

Traditionally, coronal Cobb angle measures of the major curves have been the standard means for quantifying scoliosis deformity [15]. Asher et al. investigated 45 preoperative AIS patients and found that Cobb angle correlated with the SRS-22 score of self-image domain whereas trunk deformity magnitude did not

Table 2

Spearman correlation analysis of self-image score with deformity measures.

<table>
<thead>
<tr>
<th></th>
<th>All the cases</th>
<th>TC group</th>
<th>TL/LC group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Cobb angle</td>
<td>rho < 0.001</td>
<td>−0.395</td>
<td>−0.394</td>
</tr>
<tr>
<td></td>
<td>P 0.027</td>
<td>0.002</td>
<td>0.029</td>
</tr>
<tr>
<td>Risser sign</td>
<td>rho < 0.001</td>
<td>−0.807</td>
<td>0.576</td>
</tr>
<tr>
<td></td>
<td>P 0.027</td>
<td>0.814</td>
<td></td>
</tr>
<tr>
<td>AVR</td>
<td>rho < 0.001</td>
<td>−0.085</td>
<td>−0.103</td>
</tr>
<tr>
<td></td>
<td>P 0.222</td>
<td>0.249</td>
<td>0.978</td>
</tr>
<tr>
<td>AVT</td>
<td>rho < 0.001</td>
<td>−0.290</td>
<td>−0.240</td>
</tr>
<tr>
<td></td>
<td>P 0.006</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Trunk Shift</td>
<td>rho < 0.001</td>
<td>−0.004</td>
<td>−0.036</td>
</tr>
<tr>
<td></td>
<td>P 0.953</td>
<td>0.683</td>
<td>0.848</td>
</tr>
<tr>
<td>Shoulder Height</td>
<td>rho < 0.001</td>
<td>−0.078</td>
<td>−0.170</td>
</tr>
<tr>
<td></td>
<td>P 0.252</td>
<td>0.056</td>
<td>0.504</td>
</tr>
<tr>
<td>Razor hump height</td>
<td>rho < 0.001</td>
<td>−0.272</td>
<td>−0.271</td>
</tr>
<tr>
<td></td>
<td>P 0.034</td>
<td>0.002</td>
<td>−0.274</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.015</td>
</tr>
</tbody>
</table>

rho = Spearman correlation coefficient; P = probability value, P < 0.05 considered as significant.

Table 3

Subject’s description of one-curve, double-curve and three-curve subgroups.

<table>
<thead>
<tr>
<th></th>
<th>One-curve group (n=42)</th>
<th>Double-curve group (n=102)</th>
<th>Three-curve group (n=58)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>14.57 ± 1.56</td>
<td>14.00 ± 1.67</td>
<td>14.24 ± 1.86</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>18.36 ± 2.74</td>
<td>18.43 ± 2.28</td>
<td>18.25 ± 2.84</td>
</tr>
<tr>
<td>Deformity measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Cobb angle</td>
<td>43.38 ± 7.43</td>
<td>46.06 ± 7.72</td>
<td>46.67 ± 7.58</td>
</tr>
<tr>
<td>(degree)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risser sign</td>
<td>3.43 ± 1.10</td>
<td>3.08 ± 1.28</td>
<td>3.56 ± 1.28</td>
</tr>
<tr>
<td>(degree)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVR (degree)</td>
<td>1.90 ± 0.29</td>
<td>1.72 ± 0.51</td>
<td>1.74 ± 0.45</td>
</tr>
<tr>
<td>(cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVT (cm)</td>
<td>3.43 ± 1.62</td>
<td>3.09 ± 1.53</td>
<td>2.90 ± 1.40</td>
</tr>
<tr>
<td>Trunk shift</td>
<td>1.62 ± 1.01</td>
<td>1.56 ± 0.85</td>
<td>1.55 ± 0.90</td>
</tr>
<tr>
<td>(cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder height</td>
<td>1.67 ± 0.47</td>
<td>1.53 ± 0.52</td>
<td>1.56 ± 0.75</td>
</tr>
<tr>
<td>(cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razor hump height</td>
<td>2.36 ± 0.68</td>
<td>2.11 ± 0.49</td>
<td>2.03 ± 0.56</td>
</tr>
<tr>
<td>(cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-image score</td>
<td>3.10 ± 0.52</td>
<td>3.07 ± 0.53</td>
<td>3.12 ± 0.51</td>
</tr>
<tr>
<td>of SRS-22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Gorzkowicz’s research, the Cobb angle of preoperative thoracic curves correlated with self-image significantly [16]. A multicenter study directed by Wilson et al. indicated that the Cobb angle measure of the major deformity has a small, but statistically significant, negative correlation with the self-image score [17]. Asher also reviewed 61 preoperative idiopathic scoliosis patients and analyzed the relationship between deformity measurements and SRS-22 scores [18]. Their study revealed that both spine and transverse plane trunk deformity significantly influenced patients’ perception of self-image, but the coefficient between maximum Cobb angle and self-image was ~0.33. In addition, the mean curve of the cases in our study is different from other reports [18,19]. If the mean curve is quite elevated, it may explain that different curves types can have similar result of self-image on questionnaire. Thus, more cases consisting of different curve magnitude are needed to further research.

As for other deformity parameters, Watanabe indicated that patients with a greater rotation angle in the thoracic curve had a negative self-image concept [20]. The association between the self-image and AVR was not indicated in our study. Prior research suggested that the Cobb angle does not have a direct association with rotation or spinal deformity [21]. However, the main Cobb angle was observed to have positive significant correlation with AVR and AVT in our study. The greater rotation degree or coronal translation the apical vertebra has, the greater Cobb angle is presented. In view of different scoliosis type and different curve number, we hypothesized that the location of main curve apex and the number of apex may affect the patients’ self-image score. In the current study, the patients were subdivided to TC and TL/LC groups according to the main curve apex in order to analyze if the location of apex is an influencing factor for self-image. The result shows that deformity measures and self-image score between the two groups has no significant difference. So, it was indicated that the location of scoliosis apex is not an influencing factor for self-image. Asher et al also indicated that there were no significant differences of the SRS-22 score in relation to curve pattern between thoracic and thoracolumbar curves [12].

Then, according to the number of curve, the patients were subdivided to three groups. Differences of various measures and self-image score were evaluated between different groups. The analysis showed that the three subgroups presented similar self-image score and the number of scoliosis is not an influencing factor for self-image.

Scoliosis is deformity appearing in late childhood and adolescence. As Nathan argues, the older the onset age, the greater their sensitivity on issues of physical attractiveness and the more acute their awareness of deformity and psychological consequences [22]. In our study, no statistical correlation between self-image score was observed.

Considering the sex distribution of AIS, it must be emphasized that scoliosis affects more adolescent females than males so that the sex-ratio from age 10 onward is 6.1:1 [23]. So, only female patients were included in the studied group and gender effect was excluded to better analyze the influencing factors of self-image. Furthermore, we decided not to include one male with AIS in the analysis because of the high probability that the sample group size of males with AIS would be inadequate.

Some limitations should be acknowledged to interpret the current study. The few deformity measures examined in this study may not capture all aspects of the scoliosis deformity with an influence on the patient’s perception of self-image. Future research including more cases and different parameters may demonstrate stronger associations. In addition, the SRS-22 questionnaire may not capture all the aspects of scoliosis on the self-image domain. Further work on the determinants of the SRS-22 questionnaire and on the others HRQOL questionnaires will be needed.

In summary, the study findings confirm the associations between deformity measures and self-image as determined by the SRS-22 questionnaire. Self-image was found to correlate negatively with the main Cobb angle, AVT and razor hump height. Although there were statistically significant correlations, the r values were relatively low. This would suggest that there are variables other than deformity that have a substantial effect on patients’ perception of self-image as determined by SRS-22 questionnaire. In addition, the research showed that the location of scoliosis apex and number of scoliosis were not influencing factors for self-image of female AIS patients.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

References

