Letter to the editor / Lettre à l’éditeur

Klebsiella pneumoniae carbapenemase productive: About one epidemic

Klebsiella pneumoniae productrice de carbapénémase en MPR : à propos d’une épidémie

Keywords: Physical medicine and rehabilitation units; Nosocomial infection; Klebsiella pneumoniae carbapenemase; Multidrug-resistant bacteria

Mots clés : Médecine physique et de réadaptation; Infection nosocomiale; Klebsiella pneumoniae carbapénémase; Bactéries multirésistantes

1. English version

1.1. Introduction

The emergence of carbapenemase-producing Enterobacteriaceae in France and worldwide (with the associated pandemic risk) has prompted the French health authorities to publish guidelines on control and limiting the spread of these bacteria [1].

The high prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLPE) and the exposure of hospital populations to carbapenemases appear to favour the emergence of resistant bacteria [1]. Klebsiella pneumoniae carbapenemase (KPC)-producing isolates are the most widespread highly resistant bacteria (HRB).

Infections caused by multidrug-resistant, KPC-producer are associated with a high mortality rate (22–57%), which makes the outcome of probabilistic approaches to antibiotic therapy uncertain and complicates the course of treatment [2].

Physical and rehabilitation medicine (PRM) departments must take account of the spread of KPC-producer because lengths of stay are longer than in acute care departments, and care procedures and the frequent movements of patients within the unit are interrelated.

The objective of the present report was to describe our department’s management of an epidemic of KPC-producer and our implementation of the drastic changes in organisational structure that were required to halt the spread of the bacteria over an 8-month period.

1.2. Observation

At the end of November 2010, a patient was admitted from his home (in Milan, Italy) for scheduled surgery in our institution’s neurosurgery department. A month later, a fortuitous screening procedure revealed that the patient was carrying KPC-producer. As a result, he was confined to his room and additional contact-limiting precautions were implemented. In three successive screens, all the patients in the neurosurgery department were found to be negative for KPC-producer. On January 25th, 2011, the patient returned to Italy. On the same day, the KPC-producer was discovered in another patient in the neurosurgery department. She was nevertheless admitted to our PRM department for specific care on February 1st, 2011, and adequate precautions had been taken. Another patient in our department (who had been in contact with the patient from Italy) then screened positive for the strain. Hence, at this point in time, two of our patients were carrying KPC-producer (Fig. 1).

From that time on, a certain number of measures were implemented. A crisis management team was set up: it comprised representatives of the local and regional nosocomial infection management committees, our hospital’s senior management, the operational hygiene team, the medical staff and the care and rehabilitation staff. Admissions were suspended for two weeks.

Our bed layout was reorganized; the KPC-producer-positive patients (referred to henceforth as “carriers”) were placed in a dedicated sector with dedicated personnel and a controlled entry/exit zone. The second “contact” sector housed patients who had been in contact with the two “carriers”. Once enough, patients had been discharged, a third sector was created for KPC-producer-negative patients (non-carriers).

Rehabilitation care was also reorganised, with “carriers” receiving care in their rooms. The “contact” patients and “non-carriers” underwent rehabilitation in two different areas. Once the number of “contact” patients had fallen, rehabilitation care was delivered in the same areas but at different times of the day (the morning for “non-carriers” and the afternoon for “contact” patients) (Fig. 2).

Rectal samples were collected from all “carriers” and “contact” patients weekly until August 1st, 2011, and fortnightly thereafter. All care procedures for “contact” patients complied with current guidelines on multidrugresistant bacteria.

In February 2011, there were six “carriers” (the two initial “carriers”, three positive screens from among the “contact” patients and another known “carrier” admitted from the neurosurgery department) and 38 “contact” patients. Of these six “carriers”, three were discharged to home, two were
transferred to another PRM unit nearer to their home and one was transferred to a palliative care unit.

The last “carrier” became KPC-producer-negative in July 2011. On August 1st, 2011 (and after 20 to 25 negative rectal swabs for each patient), we were able to abandon our additional precautions for “contact” patients. On September 5th, 2011, we were able to abandon our “dedicated personnel” measures for the last “carrier” (after 11 negative rectal swabs) but maintained our MRB control procedures. Care procedures were normalized in October 2011, following the discharge of the last “carrier”.

This outcome came at the cost: 11 crisis management meetings; 543 rectal samples, 382 additional staff days (151 for nurses and 231 for nursing assistants) and greater expenditure on disposable material (2600 single-use pyjamas, for example).

Our department was unavailable for a total of 388 days, with the loss of about 15 admissions. The average length of hospitalization also increased, in view of the difficulty in discharging and transferring patients – even the “carriers” who were no longer positive and “contact” patients with three negative swabs. The workload had also increased and the psychological impact on patients, families and carers was...
significant. The confinement of “carriers” probably reduced the standard of care that we were able to provide.

A list of “carriers” and “contact” patients has been circulated within our hospital group and (with a view to future admissions of these patients) an alert system has been implemented.

1.3. Discussion

Although levels of awareness of the risk of PC-producing Enterobacteriaceae epidemics (or even pandemics) have increased, the management of MRB and HRB differ from one department to another and from one hospital to another. The management of MRB colonization in PRM departments has been described for various types of bacteria, units and preventive measures [3].

Two studies of patients with spine injuries [4,5] observed a link between the presence of MRB and the administration of antibiotics in the preceding weeks or months. Furthermore, Ohana et al. reported a link with long hospital stays and the use of rooms with several beds. Both reports emphasized how difficult it is to confine patients as recommended by the guidelines, since this goes against the objectives of personnel
2. Objectives

Disclosure

enlisting

1.4. Conclusion

The emergence of MRB and HRB epidemics poses a certain number of problems – particularly in PRM units in which strict confinement reduces access to rehabilitation equipment and thus reduces the likelihood of a satisfactory rehabilitational outcome. The main difficulty is reconciling two contradictory objectives: the confinement measures required to stem the epidemic and patients’ mobility goals as part of their rehabilitation. It is essential to standardize practices and provide carers and patients with extensive, accurate information, with a view to limiting the psychological impact while enlisting their support in the fight against epidemic infections.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

2. Version française

2.1. Introduction

L’émergence et la diffusion d’entérobactéries productrices de carbapénémase (EPC) en France et dans le monde avec menace d’une pandémie a amené les autorités sanitaires françaises à publier des recommandations ayant comme objectif de contrôler et limiter leur diffusion [1].

La prévalence aujourd’hui élevée des entérobactéries productrices de bêta-lactamase à spectre élargi (EBLSE) et l’exposition des populations hospitalières aux carbapénèmes semblent être des facteurs favorisant l’émergence de bactéries résistantes à ceux-ci [1]. Parmi celles-ci, Klebsiella pneumoniae carbapénémase (KPC) est la plus répandue.

La mortalité liée à ces infections à KPC est élevée (22–57%), du fait de la multi-résistance des souches, rendant l’antibiothérapie probabiliste incertaine et l’antibiothérapie thérapeutique difficile [2].

Le risque de la diffusion de telles bactéries est important à considérer dans les structures de médecine physique et de réadaptation (MPR) parce que les séjours sont plus longs qu’en service aigu et les soins et les mouvements des patients sont multiples et intriqués.

L’objectif de ce travail est de rapporter l’expérience de notre service qui a été confronté à la présence d’une KPC et l’organisation drastique nécessaire durant 8 mois pour en juguler l’extension.

2.2. Observation

Fin novembre 2010, un patient venant de son domicile à Milan était hospitalisé dans le service de neurochirurgie du groupe hospitalier pour une intervention programmée. Un mois plus tard, il était dépisté fortuitement porteur de KPC et bénéficiait alors d’un isolement avec mise en place des précautions complémentaires contact. Trois dépistages successifs de tous les patients de ce même service étaient négatifs. Le 25 janvier 2011, le patient rentrait en Italie et, le même jour, la KPC était découverte chez une patiente du même service. Celle-ci a été néanmoins acceptée dans notre service de MPR du fait de besoins spécifiques le 1er février 2011 sous-couvert des précautions en vigueur. Une autre patiente de notre service, qui avait été en « contact » avec le patient de Milan a été alors dépistée positive. À cette date-là, il y avait donc 2 patientes porteuses de KPC (Fig. 1).

Dès lors, un certain nombre de mesures ont été prises : mise en place d’une cellule de crise réunissant le C-CLIN Paris Nord, le CLIN de l’APHP, la direction de l’hôpital, l’équipe opérationnelle d’hygiène (EOH), les médecins et l’ensemble des équipes de soin et de rééducation. Les admissions ont été suspendues durant 15 jours.

Une réorganisation géographique du secteur hospitalisation a été établie avec isolement des patients porteurs dans un secteur dédié avec un personnel dédié. À ce moment-là, le service a été divisé en 2 secteurs : un secteur « porteurs » délimité par un sac et un secteur « contacts ». Lorsque les sorties l’ont permis, un 3e secteur « indemnes » a été créé.

La rééducation a également été réorganisée. Les patients « porteurs » recevaient leur rééducation en chambre. Les patients « contacts » et « indemnes » recevaient leur rééducation sur le plateau technique mais dans des lieux différents. Lorsque le nombre de patients contacts était devenu faible, leur rééducation a été assurée dans les espaces redevenus communs en leur réservant la deuxième partie de la journée (Fig. 2).

Un prélèvement rectal pour tous les patients « porteurs » et « contacts » a été fait hebdomadairement jusqu’au 01/08/2011 puis tous les 15 jours et tous les patients « contacts » ont bénéficié des mesures en vigueur pour portage de BMR.

En février 2011, les 44 patients du service étaient concernés dont 6 « porteurs » tous dépistés en février : 2 initiaux,
3 dépistés auprès des « contacts » et 1 autre de neurochirurgie accepté en connaissance. Concernant le devenir des « porteurs » : il y a eu 3 retours à domicile, 2 transferts dans une autre structure de MPR pour rapprochement géographique et un transfert en soins palliatifs.


Ce résultat a été au prix de : 11 réunions de crise ; 543 prélèvements rectaux ; 382 journées/soignants supplémentaires (151 IDE, 231 AS) ; une augmentation des dépenses en matériel à usage unique (par exemple 2600 pyjamas à usage unique).

Nous avons déploqué 388 journées indisponibles et une perte d’environ 15 admissions sur l’année. Un allongement des durées de séjour a été constaté en raison des difficultés de sortie et de transfert, y compris pour les patients « porteurs ».

![Fig. 1. Historique de l’épidémie de KPC.](image)
négatifs ou « contacts » même s’ils avaient eu 3 prélèvements négatifs. La charge de travail a également été augmentée et l’impact psychologique tant chez les patients et leurs familles que chez les soignants a été important. Le confinement en chambre des patients « porteurs » n’a pas été sans diminution de chance.

Une liste des patients ayant été « porteurs » ou « contacts » a été enregistrée au sein du groupe hospitalier et un système d’alerte a été mis en place dans la perspective d’un passage futur de ces patients.

2.3. Discussion

Si la prise de conscience du risque d’épidémies voire de pandémie à EPC évolue, les pratiques face à la gestion des BMR et des BHR diffèrent encore d’un service à l’autre, d’un hôpital à l’autre. La prise en charge d’une colonisation à une bactérie multi-résistante (BMR) dans les services de MPR avec disparité dans les pratiques tant sur le type de bactéries recherchées, que le site de recherche et les mesures préventives a été décrite [3].
Deux études portant sur des blessés médullaires [4,5] notent le lien entre l’existence de bactéries multi-résistantes et la prise d’antibiotiques dans les semaines ou les mois qui ont précédé les études, mais également, pour Ohana et al., de longues durées d’hospitalisation et des chambres à multiples lits. Les deux équipes signalent la difficulté d’un isolement strict des patients comme il est recommandé car cela va à l’encontre des objectifs d’autonomie et d’intégration sociale en MPR. Nous avons pour notre part sérisoré le service et cela a eu un impact non négligeable sur l’organisation des soins, la charge de travail, la charge psychologique et le coût.

Nos patients concernés ont exprimé une incompréhension face à l’isolement vécu parfois comme un abandon. Newton et al. en 2001 ne retrouvent qu’une preuve faible de l’impact psychologique de l’isolement [6], d’autres auteurs montrent un impact fort [7,8]. Webster et al. rapportent une baisse de l’estime de soi ainsi qu’une sensation de stigmatisation exprimées par leurs patients [9].

Des allongements de durée de séjour pour les patients « porteurs » et « contacts » ont été constatés du fait de difficultés liées à leur transfert. Ces difficultés ont également été pointées par Mylotte et al. [10]. Enfin, il est aujourd’hui établi qu’il faut isoler un patient venant d’un pays étranger tant qu’il n’a pas eu de prélèvement à la recherche d’une BMR ou d’une BHR, mais on sait qu’il y a une diffusion en France sans apport de l’étranger. Cela souligne l’importance de la bonne connaissance et application sur le terrain des recommandations du Haut Conseil de la santé publique (HCSP) sur le sujet.

La lourdeur des mesures mises en place dans notre service lors de l’épidémie a été réelle mais cela a permis de juguler cette épidémie.

2.4. Conclusion

L’émergence d’épidémies à BMR et BHR pose un certain nombre de problèmes, en particulier en structure de MPR où l’isolement strict conduit à un risque de perte de chances, en réduisant l’accès aux moyens de rééducation. La principale difficulté étant de concilier deux impératifs contradictoires que sont les mesures d’isolement nécessaires et l’importance de la mobilité des patients qui est un objectif de la rééducation. Il faut uniformiser les pratiques, mettre en place des méthodes d’information des soignants et patients afin de limiter l’impact psychologique tout en assurant la plus grande adhésion au combat contre un tel fléau.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References


N. Bradaia, C. Scouarneca, V. Chauvini, A. Yelnikb

aUMR 8194 Paris Descartes, service de médecine physique et de réadaptation, université Paris Diderot, groupe hospitalier Saint-Louis Lariboisière-F-Widal, AP–HP, 200, rue du Faubourg-Saint-Denis, 75010 Paris, France
bUMR 8194 Paris Descartes, service d’hygiène, université Paris Diderot, groupe hospitalier Saint-Louis-Lariboisière-F-Widal, AP–HP, 200, rue du Faubourg-Saint-Denis, 75010 Paris, France

*Corresponding author
E-mail address: nacerbradaia@hotmail.com (N. Bradaia)

Received 20 December 2012
Accepted 11 June 2014