13CO2 breath tests: comparison of isotope ratio mass spectrometry and non-dispersive infrared spectrometry results

François MION (1), René ECOCHARD (2), Jérôme GUITTON (3), Thierry PONCHON (1)

(1) Fédération des Spécialités Digestives, Hôpital Edouard-Herriot, Lyon ; (2) Département d’Information Médicale, Hospices Civils, Lyon ; (3) Fédération de Biochimie, Hôpital Éd.-Herriot, Lyon.

SUMMARY

Background and aims — Isotope ratio mass spectrometry is the standard analytical method for 13CO2 breath tests. The goal of this study was to compare the results of 13CO2 breath tests obtained by non dispersive infrared spectrometry, a new, simpler and cheaper method, with those obtained by the gold standard method.

Methods — Three hundred and eight patients were included: 150 underwent a urea breath test for *Helicobacter pylori* infection, 140 an aminopyrine breath test to measure liver function, and 18 an octanoic acid breath test for gastric emptying evaluation. A total of 750 breath samples were obtained in duplicate for isotope ratio mass and infrared spectrometry analyses. Breath test results were compared using Bland-Altman plots.

Results — The agreement between the two methods was excellent for urea breath tests (kappa coefficient = 0.96), with only 3 discordant results. Although 13C isotopic enrichment in breath was significantly lower with infrared spectrometry (P < 0.0001), the agreement for the results of aminopyrine and octanoic acid breath tests was excellent. The clinical significance of these tests was similar for both methods.

Conclusions — Infrared spectrometry results are comparable to isotope ratio mass spectrometry. Because this analytical method is simpler and less expensive, it could be used for clinical applications of 13CO2 breath tests.

Key words: Breath test. Stable isotopes. Helicobacter pylori. Liver function tests. Gastric emptying.

Résultats — La concordance était excellente pour le test à l’urée (coefficient kappa = 0.96), avec seulement 3 résultats discordants. Bien que l’enrichissement isotopique en13C dans les gaz expirés soit significativement plus faible en spectrométrie infrarouge (P < 0.0001), la concordance entre les 2 méthodes pour les tests à l’aminopyrine et à l’acide octanoïque était excellente. La signification clinique de ces 2 tests était identique pour les 2 méthodes d’analyse.

Conclusions — La spectrométrie infrarouge donne des résultats comparables à ceux de la spectrométrie de masse isotopique pour les tests respiratoires. Du fait de sa simplicité et de son moindre coût, cette nouvelle technique d’analyse peut être utilisée pour la pratique clinique des tests respiratoires au 13CO2.

Materials and methods

Between January and November 1999, 308 consecutive breath tests were performed in our GI clinic: 150 urea breath tests (UBT), 140 aminopyrine breath tests (ABT) and 18 octanoic acid breath tests (OBT) in 308 different patients (table I): a total of 750 breath samples was thus obtained. UBT were performed for H. pylori infection screening (77 cases) or to assess the efficacy of anti-H. pylori treatments (73 cases). ABT were performed to evaluate liver function before liver transplantation, and OBT to measure gastric emptying in dyspeptic or diabetic patients.

Breath test procedures

Breath samples were obtained for each time point in duplicate: one glass tube (10 mL Vacutainer®) for IRMS analysis, and one breath bag (300 mL) for NDIRS analysis. All tests were carried out after an overnight fast. For UBT, 75 mg of 13C-urea (Eurisotop, Saclay, France) dissolved in water were given orally, 5 min after the ingestion of 200 mL of a 0.1N citric acid solution to slow down gastric emptying [8]. Breath samples were obtained before and 30 min after the ingestion of urea. The results of the UBT were expressed as the isotopic difference over baseline values (DOB = T30-TB) in delta ‰, with a cut-off value for negative and positive H. pylori status of 3 delta ‰ [9]. For ABT, 140 mg of 13C-aminopyrine (Eurisotop, Saclay, France) dissolved in water were given orally, and breath samples obtained before and 30 min after the administration of the labeled substrate. The results of ABT were expressed as the DOB value obtained by NDIRS and IRMS on 150 patients included in the study. For UBT, which is the only test to give a negative/positive result, the agreement between both analytical methods was studied by calculating the kappa value [12]. Differences between DOB results obtained by IRMS and NDIRS for ABT and OBT were compared by the Student’s t test for paired data. Results were expressed as mean ± standard deviation. Statistical significance was set at P < 0.05.

Results

Urea breath test results

One hundred fifty results of UBT expressed in DOB were obtained. A direct comparison of NDIRS and IRMS DOB values is represented in figure 1. The linear regression equation obtained, y = 0.25 + 1.03 x; R² = 0.992, yielded the following informations: a) DOB values measured by NDIRS were identical to those obtained by IRMS, as indicated by the value of the constant term of the equation (0.25, CI 95% = 0.80 to + 0.58; P > 0.05); b) differences between the two methods increased

140 aminopyrine breath tests (Statview, Abacus Concept, Berkeley, California). Bland and Altman plots [11] were used to assess the concordance of breath test results. For UBT, which is the only test to give a negative/positive result, the agreement between both analytical methods was studied by calculating the kappa value [12]. Differences between DOB results obtained by IRMS and NDIRS for ABT and OBT were compared by the Student’s t test for paired data. Results were expressed as mean ± standard deviation. Statistical significance was set at P < 0.05.

全国各地的医院和研究机构也纷纷采用了类似的方法，通过比较不同方法的 DOB 值来评估胃排空情况。
slightly along the entire range of DOB values, as shown by the value of the slope of the regression curve (1.03, CI 95% = 1.01-1.05); c) the amplitude of the dispersion of the values along the equality line was small, as shown by a squared correlation coefficient of 0.992. To put it differently, the value of the squared correlation coefficient indicates that 99.2% of IRMS values are known from NDIRS results.

The scatter of differences increased with larger DOB value, especially above 20 delta ‰. Most of the negative UBT tests were distributed between 0 and 1 delta ‰, while positive UBT tests had DOB values greater than 3.5 delta ‰. The final UBT results (H. pylori positive or negative) obtained by IRMS and NDIRS are summarized in Table II. The results of the 3 discordant cases are summarized in Table III. In patient #140, IRMS DOB value was just below the cut-off value (2.9 instead of 3 delta ‰), while NDIRS DOB value was above the cut-off (4.9 delta ‰). No gastric biopsy specimen was available in this case to assess the real H. pylori status. For the 2 other patients with discordant results, the H. pylori status as determined by NDIRS was confirmed by the pathological analysis of gastric antrum biopsies obtained during an upper GI endoscopy performed 4 (patient #103) and 6 weeks (patient #130) after the UBT.

Table II. – Comparison of UBT results obtained by IRMS and NDIRS in 150 patients, with a cut-off DOB value of + 3 delta ‰.

<table>
<thead>
<tr>
<th>Patient number</th>
<th>UBT indication</th>
<th>IRMS</th>
<th>NDIRS</th>
<th>Pathological analysis of gastric biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>#103 – Woman 70 year-old</td>
<td>control after anti-H. pylori treatment</td>
<td>negative (1.20 ‰)</td>
<td>positive (7.30 ‰)</td>
<td>mild H. pylori infection</td>
</tr>
<tr>
<td>#130 – Woman 63 year-old</td>
<td>control after anti-H. pylori treatment</td>
<td>positive (5.20 ‰)</td>
<td>negative (1.96 ‰)</td>
<td>no H. pylori infection</td>
</tr>
<tr>
<td>#140 – Woman 81 year-old</td>
<td>screening (dyspepsia)</td>
<td>negative (2.96 ‰)</td>
<td>positive (4.90 ‰)</td>
<td>not available</td>
</tr>
</tbody>
</table>

Table III. – Urea breath test: results in 3 patients with discordant H. pylori status as assessed by IRMS and NDIRS.

The linear regression equation obtained, $y = 0.43 + 1.02 x$ ($R^2 = 0.982$), gave the following informations: i) DOB values obtained by NDIRS were significantly lower than those obtained by IRMS, as shown by the constant term of the equation (0.43, 95% CI: 0.27 to 0.60, $P < 0.0001$); ii) however, this difference remained constant along the entire range of DOB values as shown by the slope of the regression line (1.02, 95% CI = 0.99-1.04). Figure 3 plots the difference in DOB between IRMS and NDIRS against the mean DOB value for each aminopyrine test. When examining the data by the paired t-test, the mean difference in DOB by the 2 methods was significantly different from 0 (0.52 delta ‰, $P < 0.0001$), confirming that DOB values obtained by IRMS were significantly greater than those obtained by NDIRS.

Aminopyrine breath test results

ABT results are expressed as delta over baseline values (DOB = T60-Tbaseline) in delta ‰, and give a quantitative expression of the liver functional mass [6]. A direct comparison of the 140 DOB values obtained by NDIRS and IRMS is represented in figure 2. The linear regression equation obtained, $y = 0.43 + 1.02 x$ ($R^2 = 0.982$), gave the following informations: i) DOB values obtained by NDIRS were significantly lower than those obtained by IRMS, as shown by the constant term of the equation (0.43, 95% CI: 0.27 to 0.60, $P < 0.0001$); ii) however, this difference remained constant along the entire range of DOB values as shown by the slope of the regression line (1.02, 95% CI = 0.99-1.04). Figure 3 plots the difference in DOB between IRMS and NDIRS against the mean DOB value for each aminopyrine test. When examining the data by the paired t-test, the mean difference in DOB by the 2 methods was significantly different from 0 (0.52 delta ‰, $P < 0.0001$), confirming that DOB values obtained by IRMS were significantly greater than those obtained by NDIRS.

Fig. 2 – Comparison of DOB values obtained by NDIRS and IRMS on 140 aminopyrine breath tests.

Comparaison des valeurs en DOB obtenues par NDIRS et IRMS sur 140 tests respiratoires à l’aminopyrine-13C.
13C enriched-substrates can be used as tracers in natural range of variation of this stable isotope: naturally or besides being very sensitive, IRMS systems dedicated to breath humans to study different physiological functions [10]. However, Europe, is one such system based on NDIRS methodology. Its also effective to measure liver function with tests such as the octanoic acid breath test [21]. Our study compared to IRMS for urea breath test [14, 18-20], and for 17. Recent studies have shown these systems to be reliable to the 2 methods against their means is represented in figure 4: the agreement between the two methods is excellent, with all differences lower than 0.3 for GEC. Similar agreement was observed for half-emptying times and lag phases.

Octanoic acid breath test results

Similarly, examination of DOB data for the gastric emptying test by Student's t-test showed a significant difference between IRMS and NDIRS results (0.78 delta ‰, P < 0.0001). The comparison of paired data for GEC, half-emptying time and lag phase showed no significant difference between the 2 methods (data not shown). A Bland-Altman plot of the relative differences in GEC between the 2 methods against their means is represented in figure 4: the agreement between the two methods is excellent, with all differences lower than 0.3 for GEC. Similar agreement was observed for half-emptying times and lag phases.

Discussion

13CO2 breath tests have gained popularity during the past decade thanks to the development of powerful methods for isotopic analysis, such as isotope ratio mass spectrometry. These systems allow the detection of 13C isotopic enrichment within the natural range of variation of this stable isotope: naturally or synthetically 13C enriched-substrates can be used as tracers in humans to study different physiological functions [10]. However, besides being very sensitive, IRMS systems dedicated to breath analysis are still expensive (around 400 000 French Francs) and rather complex in terms of running and maintenance. Thus, 13CO2 analysis remains limited to large analytical centers. For routine analysis and widespread use of stable isotope breath tests, reliable, cheaper and easy-to-run systems are needed. Several methods have been made recently available, based on non-dispersive infrared [5, 14, 15] or laser spectrometry [16, 17]. Recent studies have shown these systems to be reliable compared to IRMS for urea breath test [14, 18-20], and for octanoic acid breath test [21]. Our study confirms that NDIRS is also effective to measure liver function with tests such as the aminopyrine breath test.

The FANci2 analyser, distributed in Europe by Olympus Europe, is one such system based on NDIRS methodology. Its price is roughly half of standard IRMS systems (around 200 000 French Francs). This user-friendly system runs on Windows 98, functions at a constant temperature (30 °C) and pressure (1 000 hPa), which have been shown to be important parameters to avoid spurious results [22]. Breath samples obtained in 300 mL bags are then directly connected to the analyser without further sample preparation. The system uses about 100 mL of breath for analysis, thus allowing a second measurement on the same breath sample if needed. Because of the volumes of the bags, NDIRS is adapted to test samples where they are collected. This represents a limitation of the system compared to IRMS: because of the small volumes of breath gas needed for IRMS (less than 100 µL), breath samples are collected in 10 mL glass tubes that can then be sent by mail to an analytical center running IRMS.

The comparison of the results of the tests obtained by NDIRS and IRMS showed a good agreement between these two different analytical methods. For UBT, only 3 of 150 cases were found discordant between the 2 analytical methods: interestingly, NDIRS results were confirmed in 2 cases by pathological analysis of gastric biopsy specimens. The reason for the false positive and negative results by IRMS remains unknown. In the third case, the IRMS value was very close to the cut-off (2.9 delta ‰), a situation where the predictive value of the UBT is quite low (“grey zone” of the test) [9]. We observed that the scattering of the differences between the two methods increased for DOB values over 20 delta ‰. Since these positive results are far away from the cut-off value, the differences do not change the final result of the UBT. Our data thus confirm previous studies showing a good agreement between NDIRS and IRMS results [14, 19, 23].

For ABT and OBT, the results are only quantitative. Our findings show a good agreement between results obtained by IRMS and NDIRS. We observed a significant trend towards higher DOB values with IRMS. Because this difference was constant all over the DOB values spectrum, the clinical significance of the 2 tests (normal or decreased liver function mass for ABT; rapid, normal or slow gastric emptying for OBT) remained identical whatever the method used for isotopic analysis. The sole consequence of this observation would be the need to determine the normal range for ABT and OBT for both analytical procedures. Furthermore, it has been shown that for gastric emptying studies, the calculated variables GEC, half-emptying time and lag phase depend mainly on the kinetics of 13CO2 excretion curves [24], rather than on the individual DOB values. For this reason, the lower DOB values obtained at each time point with NDIRS compared to IRMS do not affect significantly the final results of the test.

In conclusion, our findings confirm that NDIRS gives similar results as IRMS in all types of breath tests used to measure gut function. This analytical method is simpler (it does not require vacuum and helium to function, as it is the case for IRMS), and its fixed costs are significantly less. The two disadvantages related to the use of NDIRS are: i) the price of the breath bags, slightly more expensive than the glass tubes used for IRMS, and ii) the necessity to have the NDIRS analyser near-by the place where the breath tests are performed. NDIRS analysers could thus be used in centers or laboratory facilities involved in breath 13C measurements in relation with the clinical use of 13CO2 breath tests.

REMERCIEMENTS Ce travail a été réalisé grâce à une bourse de recherche Olympus-Europe (H. Dremel).

Une partie de ce travail a été présentée aux Journées Francophones de Pathologie Digestive, Nice, 20-22 mars 2000.

RÉFÉRENCES

