Suscribirse

The Langevin equation - 08/12/17

L'équation de Langevin

Doi : 10.1016/j.crhy.2017.10.001 
Yves Pomeau a, , Jarosław Piasecki b
a University of Arizona, Department of Mathematics, Tucson, USA 
b Faculty of Physics, University of Warsaw, Poland 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

páginas 13
Iconografías 0
Vídeos 0
Otros 0

Abstract

The existence of atoms has been long predicted by philosophers and scientists. The development of thermodynamics and of the statistical interpretation of its concepts at the end of the nineteenth century and in the early years of the twentieth century made it possible to bridge the gap of scales between the macroscopic world and the world of atoms. Einstein and Smoluchowski showed in 1905 and 1906 that the Brownian motion of particles of measurable size is a manifestation of the motion of atoms in fluids. Their derivation was completely different from each other. Langevin showed in 1908 how to put in a coherent framework the subtle effect of the randomness of the atomic world, responsible for the fluctuating force driving the motion of the Brownian particle and the viscosity of the “macroscopic” flow taking place around the same Brownian particle. Whereas viscous forces were already well understood at this time, the “Langevin” force appears there for the first time: it represents the fluctuating part of the interaction between the Brownian particle and the surrounding fluid. We discuss the derivation by Einstein and Smoluchowski as well as a previous paper by Sutherland on the diffusion coefficient of large spheres. Next we present Langevin's short note and explain the fundamental splitting into a random force and a macroscopic viscous force. This brings us to discuss various points, like the kind of constraints on Langevin-like equations. We insist in particular on the one arising from the time-reversal symmetry of the equilibrium fluctuations. Moreover, we discuss another constraint, raised first by Lorentz, which implies that, if the Brownian particle is not very heavy, the viscous force cannot be taken as the standard Stokes drag on an object moving at uniform speed. Lastly, we examine the so-called Langevin–Heisenberg and/or Langevin–Schrödinger equation used in quantum mechanics.

El texto completo de este artículo está disponible en PDF.

Résumé

L'existence des atomes a été prédite depuis longtemps par savants et philosophes. Le développement de la thermodynamique et son interprétation par la mécanique statistique, à la fin du XIXe et au début du XXe siècle, ont rendu possible le comblement de l'écart entre l'échelle spatiale du monde macroscopique et celle des atomes. En 1905 et 1906, Einstein et Smoluchowski montrent, selon deux approches complètement différentes, que le mouvement brownien de particules de taille mésoscopique mesurable directement est une manifestation du mouvement incessant des atomes dans le fluide environnant. Peu après, en 1908, Langevin montre comment mettre dans un cadre cohérent l'effet des fluctuations aléatoires du monde atomique, qui font mouvoir la particule brownienne, et la viscosité du fluide régissant les mouvements macroscopiques de cette même particule brownienne pour les ralentir. Nous examinons les méthodes de déduction d'Einstein et de Smoluchowski ainsi qu'un article antérieur de Sutherland sur la diffusion d'une solution de sphéres mésoscopiques dans un liquide. Nous présentons ensuite la note de Langevin aux Comptes rendus de l'Académie des sciences, en insistant sur la division fondamentale entre force aléatoire et force visqueuse. Ceci nous amène à différentes questions, telles que les contraintes à satisfaire par la force de Langevin et les généralisations de l'équation de Langevin. Nous insistons sur les contraintes issues de la réversibilité en temps des fluctuations d'équilibre. Nous discutons aussi une remarque de Lorentz montrant que, si la particule brownienne n'est pas très dense, on ne peut utiliser la formule de la traînée de Stokes pour une vitesse constante dans l'équation de Langevin. Finalement, nous examinons ce qu'on appelle la théorie de Schrödinger–Langevin (ou de Heisenberg–Langevin) en mécanique quantique.

El texto completo de este artículo está disponible en PDF.

Keywords : Fluctuations, Stochastic equations, Brownian motion

Mots-clés : Fluctuations, Équations stochastiques, Mouvement brownien


Esquema


© 2017  Académie des sciences. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 18 - N° 9-10

P. 570-582 - novembre 2017 Regresar al número
Artículo precedente Artículo precedente
  • The Sagnac effect and its interpretation by Paul Langevin
  • Gianni Pascoli
| Artículo siguiente Artículo siguiente
  • The birth of wave mechanics (1923–1926)
  • Alain Aspect, Jacques Villain

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
La compra de artículos no está disponible en este momento.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.