Suscribirse

A Simple Community-Based Risk-Prediction Score for Sudden Cardiac Death - 17/04/18

Doi : 10.1016/j.amjmed.2017.12.002 
Brittany M. Bogle, PhD, MPH a, * , Hongyan Ning, MD, MS b, Jeffrey J. Goldberger, MD c, Sanjay Mehrotra, PhD d, Donald M. Lloyd-Jones, MD, ScM b
a Department of Epidemiology, University of North Carolina at Chapel Hill 
b Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill 
c Cardiovascular Division, University of Miami Miller School of Medicine, Fla 
d Northwestern University McCormick School of Engineering, Evanston, Ill 

*Requests for reprints should be addressed to Brittany M. Bogle, PhD, MPH, Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Suite 306, Chapel Hill, NC 27514.Department of EpidemiologyUniversity of North Carolina at Chapel Hill137 East Franklin Street, Suite 306Chapel HillNC27514

Abstract

Background

Although sudden cardiac death is a leading cause of death in the United States, most victims of sudden cardiac death are not identified as at risk prior to death. We sought to derive and validate a population-based risk score that predicts sudden cardiac death.

Methods

The Atherosclerosis Risk in Communities (ARIC) Study recorded clinical measures from men and women aged 45-64 years at baseline; 11,335 white and 3780 black participants were included in this analysis. Participants were followed over 10 years and sudden cardiac death was physician adjudicated. Cox proportional hazards models were used to derive race-specific equations to estimate the 10-year sudden cardiac death risk. Covariates for the risk score were selected from available demographic and clinical variables. Utility was assessed by calculating discrimination (Harrell's C-index) and calibration (Hosmer-Lemeshow chi-squared test). The white-specific equation was validated among 5626 Framingham Heart Study participants.

Results

During 10 years' follow-up among ARIC participants (mean age 54.4 years, 52.4% women), 145 participants experienced sudden cardiac death; the majority occurred in the highest quintile of predicted risk. Model covariates included age, sex, total cholesterol, lipid-lowering and hypertension medication use, blood pressure, smoking status, diabetes, and body mass index. The score yielded very good internal discrimination (white-specific C-index 0.82; 95% confidence interval [CI], 0.78-0.85; black-specific C-index 0.75; 95% CI, 0.68-0.82) and very good external discrimination among Framingham participants (C-index 0.82; 95% CI, 0.79-0.86). Calibration plots indicated excellent calibration in ARIC (white-specific chi-squared 5.3, P = .82; black-specific chi-squared 4.1, P = .77), and a simple recalibration led to excellent fit within Framingham (chi-squared 2.1, P = 0.99).

Conclusions

The proposed risk scores may be used to identify those at risk for sudden cardiac death within 10 years and particularly classify those at highest risk who may merit further screening.

El texto completo de este artículo está disponible en PDF.

Keywords : Coronary heart disease, Risk factors, Sudden cardiac death


Esquema


 Funding: This study was supported by the National Heart, Lung, and Blood Institute [R21 HL085375].
 Conflicts of Interest: JJG serves as the Director of the Path to Improved Risk Stratification, NFP, a not-for-profit think tank on risk stratification for sudden cardiac death that has received grant funding from the National Institutes of Health and unrestricted educational grants from a number of industry sources, including Boston Scientific, GE Medical, Gilead, Medtronic, and St. Jude Medical. All other authors report no conflicts of interest.
 Authorship: All authors had access to the study data and contributed to writing the manuscript. DML-J takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.


© 2018  Elsevier Inc. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 131 - N° 5

P. 532 - mai 2018 Regresar al número
Artículo precedente Artículo precedente
  • Myocardial Infarction with Nonobstructive Coronary Arteries: The Importance of Achieving Secondary Prevention Targets
  • Kai M. Eggers, Nermin Hadziosmanovic, Tomasz Baron, Kristina Hambraeus, Tomas Jernberg, Anna Nordenskjöld, Per Tornvall, Bertil Lindahl
| Artículo siguiente Artículo siguiente
  • Chest Pain and Mental Stress–Induced Myocardial Ischemia: Sex Differences
  • Pratik Pimple, Muhammad Hammadah, Kobina Wilmot, Ronnie Ramadan, Ibhar Al Mheid, Oleksiy Levantsevych, Samaah Sullivan, Ernest V. Garcia, Jonathon Nye, Amit J. Shah, Laura Ward, Puja Mehta, Paolo Raggi, J. Douglas Bremner, Arshed A. Quyyumi, Viola Vaccarino

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.