Suscribirse

Three artificial intelligence data challenges based on CT and MRI - 26/11/20

Doi : 10.1016/j.diii.2020.03.006 
N. Lassau a, b, , I. Bousaid c, E. Chouzenoux d, J.P. Lamarque a, B. Charmettant a, M. Azoulay c, F. Cotton e, A. Khalil f, O. Lucidarme g, F. Pigneur h, Y. Benaceur i, A. Sadate i, M. Lederlin j, F. Laurent k, G. Chassagnon l, af, O. Ernst m, G. Ferreti n, Y. Diascorn o, P.Y. Brillet p, M. Creze q, L. Cassagnes r, C. Caramella a, b, A. Loubet s, A. Dallongeville t, N. Abassebay u, M. Ohana v, N. Banaste w, M. Cadi x, J. Behr y, L. Boussel z, L. Fournier aa, M. Zins ab, J.P. Beregi ac, A. Luciani h, A. Cotten ad, J.F. Meder ae, af
a Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France 
b Department of Imaging, Institut Gustave Roussy, 94800 Villejuif, France 
c Direction de la Transformation Numérique et des Systèmes d’Information, Gustave Roussy, 94800 Villejuif, France 
d CVN, INRIA Saclay, 91190 Gif-sur-Yvette, France 
e Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 et CNRS UMR 5292, 69003 Lyon, France 
f Department of Radiology, Hôpital Bichat, Assistance Publique-Hopitaux de Paris, 75018 Paris, France 
g Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Department of Radiology, Hôpital Pitié-Salpêtrière Assistance Publique-Hopitaux de Paris, 75013 Paris, France 
h Department of Radiology, Assistance Publique-Hopitaux de Paris, Groupe Henri Mondor-Albert Chenevier, 94010 Créteil, France 
i Department of Radiology, CHU Nîmes, 30189 Nîmes, France 
j Department of Radiology, CHU Rennes, 35033 Rennes, France 
k Department of Radiology, CHU de Bordeaux, 33000 Bordeaux, France 
l Department of Radiology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, 75014 Paris, France 
m Department of Radiology, CHU de Lille, Hôpital Huriez, 59037 Lille, France 
n Department of Diagnostic & Interventional Radiology, CS 10217, 38043 Grenoble, France 
o Department of Radiology, CHU de Nice, Hôpital Pasteur, 06000 Nice, France 
p Department of Radiology, Hôpital Avicenne, Assistance Publique-Hopitaux de Paris & Université Paris 13, INSERM UMR 1272 Hypoxie et Poumon, 93022 Bobigny, France 
q Department of Radiology, Hôpital Bicêtre, Assistance Publique-Hopitaux de Paris, 94270 Le Kremlin-Bicêtre, France 
r Department of Radiology, CHU de Clermont-Ferrand, Hôpital Montpied, 63003 Clermont-Ferrand, France 
s Department of Radiology, CHU Montpellier, 34295 Montpellier, France 
t Department of Radiology, GHSPJ, 75014 Paris, France 
u Department of Radiology, CH Douai, 59507 Douai, France 
v Department of Radiology, Nouvel Hôpital Civil, 67000 Strasbourg, France 
w Department of Radiology, Centre Leon Berard, 69008 Lyon, France 
x Clinique Hartmann, 92200 Neuilly, France 
y Department of Radiology, CHRU de Jean-Minjoz Besançon, 25030 Besançon, France 
z Department of Radiology, Hospices Civils de Lyon, Université de Lyon, 69000 Lyon, France 
aa Department of Radiology, Université de Paris, Descartes-Paris 5, Hôpital Européen Georges-Pompidou Assistance Publique-Hopitaux de Paris, 75015 Paris, France 
ab Department of Radiology, Groupe Hospitalier Paris Saint Joseph, 75014 Paris, France 
ac Collège des Enseignants de Radiologie de France (CERF, French College of Radiology Teachers), 47, rue de la Colonie, 75013 Paris, France 
ad Lille Regional University Hospital, Musculoskeletal Imaging Department, 59000 Lille, France 
ae Department of Neuroradiology, Centre Hospitalier Sainte-Anne, 75014 Paris, France 
af Université de Paris, Descartes-Paris 5, 75006 Paris, France 

Corresponding author. Imaging Department , Institut Gustave Roussy and Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France.Imaging Department , Institut Gustave Roussy and Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEAVillejuif94800France

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

Three data challenges with over 1200 general data protection regulation compliant examinations each were organized.
For the Multiple Sclerosis Challenge on 3D FLAIR images, the best score (i.e., mean square error) to predict expanded disability status scale obtained by the winning team was 3.04.
For the Sarcopenia Challenge on CT images, the best score (i.e., combination of similarity index and mean square error) obtained by the winning team was 4.
For the Pulmonary Nodule Challenge on CT images, the best score (i.e., area under the curve) obtained by the winning team was 0.899.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The second edition of the artificial intelligence (AI) data challenge was organized by the French Society of Radiology with the aim to: (i), work on relevant public health issues; (ii), build large, multicentre, high quality databases; and (iii), include three-dimensional (3D) information and prognostic questions.

Materials and methods

Relevant clinical questions were proposed by French subspecialty colleges of radiology. Their feasibility was assessed by experts in the field of AI. A dedicated platform was set up for inclusion centers to safely upload their anonymized examinations in compliance with general data protection regulation. The quality of the database was checked by experts weekly with annotations performed by radiologists. Multidisciplinary teams competed between September 11th and October 13th 2019.

Results

Three questions were selected using different imaging and evaluation modalities, including: pulmonary nodule detection and classification from 3D computed tomography (CT), prediction of expanded disability status scale in multiple sclerosis using 3D magnetic resonance imaging (MRI) and segmentation of muscular surface for sarcopenia estimation from two-dimensional CT. A total of 4347 examinations were gathered of which only 6% were excluded. Three independent databases from 24 individual centers were created. A total of 143 participants were split into 20 multidisciplinary teams.

Conclusion

Three data challenges with over 1200 general data protection regulation compliant CT or MRI examinations each were organized. Future challenges should be made with more complex situations combining histopathological or genetic information to resemble real life situations faced by radiologists in routine practice.

El texto completo de este artículo está disponible en PDF.

Keywords : Artificial intelligence (AI), Machine learning, Deep learning, Magnetic resonance imaging (MRI), Computed tomography (CT)

Abbreviations : 2D, 3D, AI, AUC, CT, DICOM, EDSS, FLAIR, GDPR, JFR, MS, MSE, ROC, SFR


Esquema


© 2020  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 101 - N° 12

P. 783-788 - décembre 2020 Regresar al número
Artículo precedente Artículo precedente
  • Evaluation of the urinary bladder using three-dimensional CT cinematic rendering
  • S.P. Rowe, A.R. Meyer, M.A. Gorin, L.C. Chu, E.K. Fishman
| Artículo siguiente Artículo siguiente
  • Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment
  • P. Blanc-Durand, J.-B. Schiratti, K. Schutte, P. Jehanno, P. Herent, F. Pigneur, O. Lucidarme, Y. Benaceur, A. Sadate, A. Luciani, O. Ernst, A. Rouchaud, M. Creze, A. Dallongeville, N. Banaste, M. Cadi, I. Bousaid, N. Lassau, S. Jegou

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.