Suscribirse

Artificial intelligence solution to classify pulmonary nodules on CT - 26/11/20

Doi : 10.1016/j.diii.2020.10.004 
D. Blanc a, V. Racine a, A. Khalil b, c, M. Deloche d, J.-A. Broyelle d, I. Hammouamri d, E. Sinitambirivoutin d, M. Fiammante e, E. Verdier e, T. Besson e, A. Sadate f, M. Lederlin g, F. Laurent h, G. Chassagnon i, G. Ferretti j, Y. Diascorn k, P.-Y. Brillet l, Lucie Cassagnes m, C. Caramella n, A. Loubet o, N. Abassebay p, P. Cuingnet p, M. Ohana q, J. Behr r, A. Ginzac s, t, u, H. Veyssiere s, t, u, X. Durando s, t, u, v, I. Bousaïd w, N. Lassau x, J. Brehant y,
a QuantaCell, IRMB, Hôpital Saint-Eloi, 34090 Montpellier, France 
b Department of Radiology, Neuroradiology unit, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat Claude Bernard, 75018 Paris, France 
c Université de Paris, 75010, Paris, France 
d >IBM Cognitive Systems Lab, 34000 Montpellier, France 
e IBM Cognitive Systems France, 92270 Bois-Colombes, France 
f Department of Radiology and Medical Imaging, CHU Nîmes, University Montpellier, EA2415, 30029 Nîmes, France 
g Department of Radiology, Hôpital Universitaire Pontchaillou, 35000 Rennes, France 
h Department of thoracic and cardiovascular Imaging, Respiratory Diseases Service, Respiratory Functional Exploration Service, Hôpital universitaire de Bordeaux, CIC 1401, 33600 Pessac, France 
i Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France & Université de Paris, 75006 Paris, France 
j Department of Radiology and Medical Imaging, CHU Grenoble Alpes, 38700 Grenoble, France 
k Department of Radiology, Hôpital Universitaire Pasteur, Nice, France 
l Inserm UMR 1272, Université Sorbonne Paris Nord, Assistance Publique-Hôpitaux de Paris, Department of Radiology, Hôpital Avicenne, 93430 Bobigny, France 
m Department of radiology B, CHU Gabriel Montpied, 63003 Clermont-Ferrand, France 
n Department of Radiology, Institut Gustave Roussy, 94800 Villejuif, France 
o Department of Neuroradiology, Hôpital Gui-de-Chauliac, CHRU de Montpellier, 34000 Montpellier, France 
p Department of Radiology, CH Douai, 59507 Douai, France 
q Department of Radiology, Nouvel Hôpital Civil, 67000 Strasbourg, France 
r Department of Radiology, CHRU de Jean-Minjoz Besançon, 25030 Besançon, France 
s Clinical Research Unit, Clinical Research and Innovation Delegation, Centre de Lutte contre le Cancer, Centre Jean Perrin, 63011 Clermont-Ferrand Cedex 1, France 
t Université Clermont Auvergne,INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Centre Jean Perrin, 63011 Clermont-Ferrand, France 
u Clinical Investigation Center, UMR501, 63011 Clermont-Ferrand, France 
v Department of Medical Oncology, Centre Jean Perrin, 63011 Clermont-Ferrand, France 
w Digital Transformation and Information Systems Division, Gustave Roussy, 94800 Villejuif, France 
x Multimodal Biomedical Imaging Laboratory Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, Department of Radiology, Institut Gustave Roussy, 94800, Villejuif, France 
y Department of Radiology, Centre Jean Perrin, 63011 Clermont-Ferrand, France 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

An algorithm was created to detect and classify pulmonary nodules in two categories based on their volume greater than 100 mm3 or not, using machine learning and deep learning techniques.
A fully functional pipeline using 3D U-NET, 3D Retina-UNET and classifier stage with a support vector machine algorithm was developed, resulting in high capabilities for pulmonary nodule classification.
The developed pipeline, from a database from different hospitals and with different data acquisition protocols, has very satisfactory performance.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to create an algorithm to detect and classify pulmonary nodules in two categories based on their volume greater than 100 mm3 or not, using machine learning and deep learning techniques.

Materials and method

The dataset used to train the model was provided by the organization team of the SFR (French Radiological Society) Data Challenge 2019. An asynchronous and parallel 3-stages pipeline was developed to process all the data (a data “pre-processing” stage; a “nodule detection” stage; a “classifier” stage). Lung segmentation was achieved using 3D U-NET algorithm; nodule detection was done using 3D Retina-UNET and classifier stage with a support vector machine algorithm on selected features. Performances were assessed using area under receiver operating characteristics curve (AUROC).

Results

The pipeline showed good performance for pathological nodule detection and patient diagnosis. With the preparation dataset, an AUROC of 0.9058 (95% confidence interval [CI]: 0.8746–0.9362) was obtained, 87% yielding accuracy (95% CI: 84.83%–91.03%) for the “nodule detection” stage, corresponding to 86% specificity (95% CI: 82%–92%) and 89% sensitivity (95% CI: 84.83%–91.03%).

Conclusion

A fully functional pipeline using 3D U-NET, 3D Retina-UNET and classifier stage with a support vector machine algorithm was developed, resulting in high capabilities for pulmonary nodule classification.

El texto completo de este artículo está disponible en PDF.

Keywords : Lung cancer, Pulmonary nodule, Support vector machine, Deep learning, Machine learning.

Abbreviations : 2D, 3D, AI, AUC, AUROC, CAD, CNN, CPU, CT, FN, FP, GPU, HU, LIDC, R-CNN, RFE, ROC, SVM


Esquema


© 2020  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 101 - N° 12

P. 803-810 - décembre 2020 Regresar al número
Artículo precedente Artículo precedente
  • Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI
  • P. Roca, A. Attye, L. Colas, A. Tucholka, P. Rubini, S. Cackowski, J. Ding, J.-F. Budzik, F. Renard, S. Doyle, E.L. Barbier, I. Bousaid, R. Casey, S. Vukusic, N. Lassau, S. Verclytte, F. Cotton, OFSEP Investigators, Steering Committee, Investigators, Imaging group, B. Brochet, R. Casey, F. Cotton, J. De Sèze, P. Douek, F. Guillemin, D. Laplaud, C. Lebrun-Frenay, L. Mansuy, T. Moreau, J. Olaiz, J. Pelletier, C. Rigaud-Bully, B. Stankoff, S. Vukusic, R. Marignier, M. Debouverie, G. Edan, J. Ciron, A. Ruet, N. Collongues, C. Lubetzki, P. Vermersch, P. Labauge, G. Defer, M. Cohen, A. Fromont, S. Wiertlewsky, E. Berger, P. Clavelou, B. Audoin, C. Giannesini, O. Gout, E. Thouvenot, O. Heinzlef, A. Al-Khedr, B. Bourre, O. Casez, P. Cabre, A. Montcuquet, A. Créange, J.-P. Camdessanché, J. Faure, A. Maurousset, I. Patry, K. Hankiewicz, C. Pottier, N. Maubeuge, C. Labeyrie, C. Nifle, R. Ameli, R. Anxionnat, A. Attye, E. Bannier, C. Barillot, D. Ben Salem, M.-P. Boncoeur-Martel, F. Bonneville, C. Boutet, J.-C. Brisset, F. Cervenanski, B. Claise, O. Commowick, J.-M. Constans, P. Dardel, H. Desal, Vincent Dousset, F. Durand-Dubief, J.-C. Ferre, E. Gerardin, T. Glattard, S. Grand, T. Grenier, R. Guillevin, C. Guttmann, A. Krainik, S. Kremer, S. Lion, N. Menjot de Champfleur, L. Mondot, O. Outteryck, N. Pyatigorskaya, J.-P. Pruvo, S. Rabaste, J.-P. Ranjeva, J.-A. Roch, J.C. Sadik, D. Sappey-Marinier, J. Savatovsky, J.-Y. Tanguy, A. Tourbah, T. Tourdias
| Artículo siguiente Artículo siguiente
  • Comparison of breast density assessment between human eye and automated software on digital and synthetic mammography: Impact on breast cancer risk
  • M. Le Boulc’h, A. Bekhouche, E. Kermarrec, A. Milon, C. Abdel Wahab, S. Zilberman, N. Chabbert-Buffet, I. Thomassin-Naggara

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.