Toward High-Throughput Artificial Intelligence-Based Segmentation in Oncological PET Imaging - 16/09/21
, Abhinav K. Jha, PhD b, c, Julia Brosch-Lenz, PhD a, Babak Saboury, MD, MPH, DABR, DABNM d, e, f, Arman Rahmim, PhD, DABSNM g, hResumen |
Artificial intelligence (AI) techniques for image-based segmentation have garnered much attention in recent years. Convolutional neural networks have shown impressive results and potential toward fully automated segmentation in medical imaging, and particularly PET imaging. To cope with the limited access to annotated data needed in supervised AI methods, given tedious and prone-to-error manual delineations, semi-supervised and unsupervised AI techniques have also been explored for segmentation of tumors or normal organs in single- and bimodality scans. This work reviews existing AI techniques for segmentation tasks and the evaluation criteria for translational AI-based segmentation efforts toward routine adoption in clinical workflows.
El texto completo de este artículo está disponible en PDF.Keywords : Artificial intelligence, Nuclear medicine, PET, Convolutional neural network, Segmentation, Metabolically active tumor volume
Esquema
Vol 16 - N° 4
P. 577-596 - octobre 2021 Regresar al númeroBienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.
¿Ya suscrito a @@106933@@ revista ?
