Classification Criteria for Cytomegalovirus Anterior Uveitis - 21/10/21
Resumen |
Purpose |
To determine classification criteria for cytomegalovirus (CMV) anterior uveitis.
Design |
Machine learning of cases with CMV anterior uveitis and 8 other anterior uveitides.
Methods |
Cases of anterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the anterior uveitides. The resulting criteria were evaluated on the validation set.
Results |
One thousand eighty-three cases of anterior uveitides, including 89 cases of CMV anterior uveitis, were evaluated by machine learning. The overall accuracy for anterior uveitides was 97.5% in the training set and 96.7% in the validation set (95% confidence interval 92.4, 98.6). Key criteria for CMV anterior uveitis included unilateral anterior uveitis with a positive aqueous humor polymerase chain reaction assay for CMV. No clinical features reliably diagnosed CMV anterior uveitis. The misclassification rates for CMV anterior uveitis were 1.3% in the training set and 0% in the validation set.
Conclusions |
The criteria for CMV anterior uveitis had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.
El texto completo de este artículo está disponible en PDF.Esquema
Vol 228
P. 89-95 - août 2021 Regresar al númeroBienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.
¿Ya suscrito a @@106933@@ revista ?
