A systematic review on Data Mining Application in Parkinson's disease - 24/03/22

Doi : 10.1016/j.neuri.2022.100064 
Adesh Kumar Srivastava , Klinsega Jeberson, Wilson Jeberson
 Department of Computer Science & Information Technology, Shepherd School of Engineering & Technology, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, U.P., India 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Data mining techniques have taken a significant role in the diagnosis and prognosis of many health diseases. Still, very little work has been initialized in neurological medical informatics or neurodegenerative disease. Parkinson's Disease (PD) is the second significant neurodegenerative disease (after Alzheimer's), which causes severe complications for patients. PD is a nervous disorder that affects millions of people worldwide. Most of the cases go undetected due to a lack of standard detection methods. This paper attempts to review literature related to PD diagnosis, its stages, and its management using data mining techniques (DMT). The review has been done by exploring the Scopus indexed literature using the query containing the keywords data-mining and Parkinson's disease. This study's focus is to observe how DMT, its applications have developed in PD during the past 16 years. This paper reviews data mining techniques, their applications, and development, through a review of the literature and articles' classification, from 2004 to 2020. We have used keyword indices and article abstracts to identify 273 articles concerning DMT applications from 159 academic journals from Scopus online database. Another objective of this paper is to provide directions to researchers in data mining applications in Parkinson's disease.

El texto completo de este artículo está disponible en PDF.

Esquema


© 2022  The Authors. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 2 - N° 4

Artículo 100064- décembre 2022 Regresar al número
Artículo precedente Artículo precedente
  • Dynamic architecture based deep learning approach for glioblastoma brain tumor survival prediction
  • Disha Sushant Wankhede, R. Selvarani
| Artículo siguiente Artículo siguiente
  • Alzheimer's disease detection from structural MRI using conditional deep triplet network
  • Maysam Orouskhani, Chengcheng Zhu, Sahar Rostamian, Firoozeh Shomal Zadeh, Mehrzad Shafiei, Yasin Orouskhani

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.