Suscribirse

3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer - 03/11/22

Doi : 10.1016/j.diii.2022.06.002 
Junli Tao a, b, 1, Changyu Liang a, b, 1, Ke Yin a, b, Jiayang Fang a, b, Bohui Chen a, b, Zhenyu Wang a, b, Xiaosong Lan a, b, Jiuquan Zhang a, b,
a Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China 
b Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400044, PR China 

Corresponding author at: Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030 PR China.Department of RadiologyChongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer HospitalChongqing400030PR China

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

CT-based convolutional neural network (CNN) model can predict spread through air space in non-small cell lung cancer with high accuracy.
CNN model is superior to other four models (clinicopathological/CT model, conventional radiomics model, computer vision model, and combined model) to predict spread through air space in non-small cell lung cancer.
The CNN model yields an AUC of 0.93 (95% CI: 0.70–0.82) for predicting spread through air space in non-small cell lung cancer.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to compare the efficacy of five non-invasive models, including three-dimensional (3D) convolutional neural network (CNN) model, to predict the spread through air spaces (STAS) status of non-small cell lung cancer (NSCLC), and to obtain the best prediction model to provide a basis for clinical surgery planning.

Materials and methods

A total of 203 patients (112 men, 91 women; mean age, 60 years; age range 22–80 years) with NSCLC were retrospectively included. Of these, 153 were used for training cohort and 50 for validation cohort. According to the image biomarker standardization initiative reference manual, the image processing and feature extraction were standardized using PyRadiomics. The logistic regression classifier was used to build the model. Five models (clinicopathological/CT model, conventional radiomics model, computer vision (CV) model, 3D CNN model and combined model) were constructed to predict STAS by NSCLC. Area under the receiver operating characteristic curves (AUC) were used to validate the capability of the five models to predict STAS.

Results

For predicting STAS, the 3D CNN model was superior to the clinicopathological/CT model, conventional radiomics model, CV model and combined model and achieved satisfactory discrimination performance, with an AUC of 0.93 (95% CI: 0.70–0.82) in the training cohort and 0.80 (95% CI: 0.65–0.86) in the validation cohort. Decision curve analysis indicated that, when the probability of the threshold was over 10%, the 3D CNN model was beneficial for predicting STAS status compared to either treating all or treating none of the patients within certain ranges of risk threshold

Conclusion

The 3D CNN model can be used for the preoperative prediction of STAS in patients with NSCLC, and was superior to the other four models in predicting patients' risk of developing STAS.

El texto completo de este artículo está disponible en PDF.

Keywords : Computer vision, Conventional radiomics, Deep learning, Non-small cell lung cancer, Spread through air spaces

Abbreviations : 2D, 3D, AIC, AUC, CNN, CT, CV, DICOM, EGFR, IBSI, ICC, NSCLC, ROC, STAS, VOI


Esquema


© 2022  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 103 - N° 11

P. 535-544 - novembre 2022 Regresar al número
Artículo precedente Artículo precedente
  • Liver imaging reporting and data system (LI-RADS) v2018: Reliability and agreement for assessing hepatocellular carcinoma locoregional treatment response
  • Ahmed S. Abdelrahman, Mena E.Y. Ekladious, Ethar M. Badran, Sherihan S. Madkour
| Artículo siguiente Artículo siguiente
  • Reproducibility of apparent diffusion coefficient measurement in normal prostate peripheral zone at 1.5T MRI
  • Au Hoang-Dinh, Trung Nguyen-Quang, Lenh Bui-Van, Christelle Gonindard-Melodelima, Rémi Souchon, Olivier Rouvière

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.