Gradient boosting decision-tree-based algorithm with neuroimaging for personalized treatment in depression - 19/11/22

Doi : 10.1016/j.neuri.2022.100110 
Farzana Z. Ali a, , Kenneth Wengler a, b , Xiang He c, d, 1 , Minh Hoai Nguyen e , Ramin V. Parsey f , Christine DeLorenzo a, b, f
a Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 
b Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA 
c Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA 
d Department of Radiology, Northshore University Hospital, Manhasset, NY, USA 
e Department of Computer Science, Stony Brook University, Stony Brook, NY, USA 
f Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Introduction

Pretreatment positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and magnetic resonance spectroscopy (MRS) may identify biomarkers for predicting remission (absence of depression). Yet, no such image-based biomarkers have achieved clinical validity. The purpose of this study was to identify biomarkers of remission using machine learning (ML) with pretreatment FDG-PET/MRS neuroimaging, to reduce patient suffering and economic burden from ineffective trials.

Methods

This study used simultaneous PET/MRS neuroimaging from a double-blind, placebo-controlled, randomized antidepressant trial on 60 participants with major depressive disorder (MDD) before initiating treatment. After eight weeks of treatment, those with ≤7 on 17-item Hamilton Depression Rating Scale were designated a priori as remitters (free of depression, 37%). Metabolic rate of glucose uptake (metabolism) from 22 brain regions were acquired from PET. Concentrations (mM) of glutamine and glutamate and gamma-aminobutyric acid (GABA) in anterior cingulate cortex were quantified from MRS. The data were randomly split into 67% train and cross-validation ( ), and 33% test ( ) sets. The imaging features, along with age, sex, handedness, and treatment assignment (selective serotonin reuptake inhibitor or SSRI vs. placebo) were entered into the eXtreme Gradient Boosting (XGBoost) classifier for training.

Results

In test data, the model showed 62% sensitivity, 92% specificity, and 77% weighted accuracy. Pretreatment metabolism of left hippocampus from PET was the most predictive of remission.

Conclusions

The pretreatment neuroimaging takes around 60 minutes but has potential to prevent weeks of failed treatment trials. This study effectively addresses common issues for neuroimaging analysis, such as small sample size, high dimensionality, and class imbalance.

El texto completo de este artículo está disponible en PDF.

Graphical abstract

El texto completo de este artículo está disponible en PDF.

Highlights

Pretreatment imaging can predict remission with 77% weighted accuracy.
The predictive performance does not differ by sex or treatment assignment.
Pretreatment metabolism of left hippocampus is the most predictive of remission.
Outlier removal improves model performance for predicting remission.
Synthetic data generation is an effective way to address class imbalance.

El texto completo de este artículo está disponible en PDF.

Keywords : Artificial intelligence, Imaging informatics, Medical imaging, FDG PET, Magnetic resonance spectroscopy, XGBoost


Esquema


© 2022  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 2 - N° 4

Artículo 100110- décembre 2022 Regresar al número
Artículo precedente Artículo precedente
  • Multiagent mobility and lifestyle recommender system for individuals with visual impairment
  • Kuo-Pao Tsai, Feng-Chao Yang, Chuan-Yi Tang
| Artículo siguiente Artículo siguiente
  • A deep dive into metacognition: Insightful tool for moral reasoning and emotional maturity
  • Sunder Kala Negi, Yaisna Rajkumari, Minakshi Rana

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.