Suscribirse

Automatic deep learning-based assessment of spinopelvic coronal and sagittal alignment - 23/06/23

Doi : 10.1016/j.diii.2023.03.003 
Mohamed Zerouali a, Alexandre Parpaleix b, Mansour Benbakoura b, Caroline Rigault b, Pierre Champsaur a, c, Daphné Guenoun a, c,
a Department of Radiology, Institute for Locomotion, Sainte-Marguerite Hospital, APHM, 13009 Marseille, France 
b Milvue, 75014 Paris, France 
c Institute of Movement Sciences (ISM), CNRS, Aix Marseille University, 13005 Marseille, France 

Corresponding author:

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

Artificial intelligence yields excellent consistency without bias in the estimation of coronal spinopelvic alignment (ICC range: 0.95–0.97).
Artificial intelligence yields excellent consistency in sagittal spinopelvic evaluation for all outputs except for kyphosis (ICC range: 0.85–0.98).
Artificial intelligence allows classifying low Cobb angle and severe scoliosis with an accuracy ≥ 91%.
Seventy-two p. cents of the artificial intelligence outputs are classified as reliable by the radiologist, without any measurement to modify.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to evaluate an artificial intelligence (AI) solution for estimating coronal and sagittal spinopelvic alignment on conventional uniplanar two-dimensional whole-spine radiograph.

Material and methods

This retrospective observational study included 100 patients (35 men, 65 women) with a median age of 14 years (IQR: 13, 15.25; age range: 3–64 years) who underwent conventional uniplanar two-dimensional whole-spine radiograph in standing position between January and July 2022. Ten most commonly used spinopelvic coronal and sagittal parameters were retrospectively measured without AI by a junior radiologist and approved or adjusted by a senior musculoskeletal radiologist to reach final measurements. Final measurements were used as the ground truth to assess AI performance for each parameter. AI performances were estimated using mean absolute errors (MAE), intraclass correlation coefficient (ICCs), and accuracy for selected clinically relevant thresholds. Readers visually classified AI outputs to assess reliability at a patient-level.

Results

AI solution showed excellent consistency without bias in coronal (ICCs ≥ 0.95; MAE ≤ 2.9° or 1.97 mm) and sagittal (ICCs ≥ 0.85; MAE ≤ 4.4° or 2.7 mm) spinopelvic evaluation, except for kyphosis (ICC = 0.58; MAE = 8.7°). AI accuracy to classify low Cobb angle, severe scoliosis or frontal pelvic asymmetry was 91% (95% CI: 85–96), 99% (95% CI: 97–100) and 94% (95% CI: 89–98), respectively. Overall, AI provided reliable measurements in 72/100 patients (72%).

Conclusion

The AI solution used in this study for combined coronal and sagittal spinopelvic balance assessment provides results consistent with those of a senior musculoskeletal radiologist, and shows potential benefit for reducing workload in future routine implementation.

El texto completo de este artículo está disponible en PDF.

Keywords : Artificial intelligence, Automated analysis, Uniplanar whole-spine radiographs, Deep learning, Spine deformities

Abbreviations : AI, CA, CI, CVA, FN, FP, FPA, GT, ICC, IQR, MAE, NPV, PI, PPV, PT, SS, SD, SVA, TN, TP


Esquema


© 2023  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 104 - N° 7-8

P. 343-350 - juillet 2023 Regresar al número
Artículo precedente Artículo precedente
  • Vascular hyperintensities on baseline FLAIR images are associated with functional outcome in stroke patients with successful recanalization after mechanical thrombectomy
  • Alexandre Bani-Sadr, Raphaël Escande, Laura Mechtouff, Dylan Pavie, Marc Hermier, Laurent Derex, Tae-Hee Choc, Omer F. Eker, Norbert Nighoghossian, Yves Berthezène
| Artículo siguiente Artículo siguiente
  • Comparison between 2D FSE T2-weighted Dixon MRI and contrast-enhanced 2D FSE and 3D FSPGR T1-weighted Dixon MRI to quantify inflammation in hands of patients with early rheumatoid arthritis
  • Brice Dion, Romain Lacrosse, Nicolas Michoux, Maria Stoenoiu, Patrick Durez, Frédéric Lecouvet, Thomas Kirchgesner

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.