Suscribirse

EE-Explorer: A Multimodal Artificial Intelligence System for Eye Emergency Triage and Primary Diagnosis - 12/07/23

Doi : 10.1016/j.ajo.2023.04.007 
Juan Chen 1, a, Xiaohang Wu 1, a, Mingyuan Li a, Lixue Liu a, Liuxueying Zhong a, Jun Xiao a, Bingsheng Lou a, Xingwu Zhong a, b, Yanting Chen b, Wenbin Huang b, Xiangda Meng c, Yufei Gui d, Meizhen Chen e, Dongni Wang a, Meimei Dongye a, Xulin Zhang a, Carol Y. Cheung f, Iat Fan Lai g, Hua Yan c, Xiaofeng Lin a, Yongxin Zheng a, Haotian Lin a, b, h,
a From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (J.C., X.W., M.L., L.L., L.Z., J.X., B.L., X.Zho., D.W., M.D., X.Zha., X.L., Y.Z., H.L.), Guangzhou, Guangdong 
b Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (X.Zho., Y.C., W.H., H.L.), Haikou, Hainan 
c Tianjin Medical University General Hospital (X.M., H.Y.), Tianjin 
d First Affiliated Hospital of Kunming Medical University, Kunming (Y.G.), Yunnan 
e Guangzhou Aier Eye Hospital (M.C.), Guangzhou, Guangdong 
f Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong (C.Y.C.), Hong Kong 
g Ophthalmic Center, Kiang Wu Hospital (I.F.L.), Macao SAR, Macao 
h Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University (H.L.), Guangzhou, Guangdong, China 

Inquiries to Haotian Lin, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China;Zhongshan Ophthalmic CenterSun Yat-sen UniversityGuangzhouChina

Resumen

Purpose

To develop a multimodal artificial intelligence (AI) system, EE-Explorer, to triage eye emergencies and assist in primary diagnosis using metadata and ocular images.

Design

A diagnostic, cross-sectional, validity and reliability study.

Methods

EE-Explorer consists of 2 models. The triage model was developed from metadata (events, symptoms, and medical history) and ocular surface images via smartphones from 2038 patients presenting to Zhongshan Ophthalmic Center (ZOC) to output 3 classifications: urgent, semiurgent, and nonurgent. The primary diagnostic model was developed from the paired metadata and slitlamp images of 2405 patients from ZOC. Both models were externally tested on 103 participants from 4 other hospitals. A pilot test was conducted in Guangzhou to evaluate the hierarchical referral service pattern assisted by EE-Explorer for unspecialized health care facilities.

Results

A high overall accuracy, as indicated by an area under the receiver operating characteristic curve (AUC) of 0.982 (95% CI, 0.966-0.998), was obtained using the triage model, which outperformed the triage nurses (P < .001). In the primary diagnostic model, the diagnostic classification accuracy (CA) and Hamming loss (HL) in the internal testing were 0.808 (95% CI 0.776-0.840) and 0.016 (95% CI 0.006-0.026), respectively. In the external testing, model performance was robust for both triage (average AUC, 0.988, 95% CI 0.967-1.000) and primary diagnosis (CA, 0.718, 95% CI 0.644-0.792; and HL, 0.023, 95% CI 0.000-0.048). In the pilot test in the hierarchical referral settings, EE-explorer demonstrated consistently robust performance and broad participant acceptance.

Conclusion

The EE-Explorer system showed robust performance in both triage and primary diagnosis for ophthalmic emergency patients. EE-Explorer can provide patients with acute ophthalmic symptoms access to remote self-triage and assist in primary diagnosis in unspecialized health care facilities to achieve rapid and effective treatment strategies.

El texto completo de este artículo está disponible en PDF.

Esquema


 Supplemental Material available at AJO.com.


© 2023  The Authors. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 252

P. 253-264 - août 2023 Regresar al número
Artículo precedente Artículo precedente
  • Short-Term Outcomes of Modified Boston Type-II Keratoprosthesis Implantation With Autologous Auricular Cartilage Reinforcement
  • Mimi Liu, Han Wen, Lei Lin, Chaoxiang Ge, Lili Guo, James Chodosh, Qinxiang Zheng, Wei Chen
| Artículo siguiente Artículo siguiente
  • NOV03 for Signs and Symptoms of Dry Eye Disease Associated With Meibomian Gland Dysfunction: The Randomized Phase 3 MOJAVE Study
  • John D. Sheppard, Fred Kurata, Alice T. Epitropoulos, Sonja Krösser, Jason L. Vittitow, MOJAVE Study Group

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.