Suscribirse

Combining b2500 diffusion-weighted imaging with BI-RADS improves the specificity of breast MRI - 26/08/23

Doi : 10.1016/j.diii.2023.05.001 
Laetitia Saccenti a, , Constance de Margerie Mellon a, b, Margaux Scholer a, Zoe Jolibois a, Alto Stemmer c, Elisabeth Weiland c, Cedric de Bazelaire a, b
a Department of Radiology, Senopole, Hopital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France 
b Université Paris Cité, Faculté de Médecine, 75006 Paris, France 
c Siemens Healthineers GMBH, 91052 Erlanger, Germany 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Highlights

Visual assessment of b2500 diffusion-weighted images of a breast lesion detected on contrast-enhanced images has substantial interobserver agreement, regardless of the readers’ experience (Fleiss kappa = 0.77).
Focal hypersignal of a breast lesion compared to surrounding parenchyma on b2500 diffusion-weighted images yields better performance for cancer detection than apparent diffusion coefficient using a threshold of 1 × 10−3 mm2/s.
Adding visual assessment of b2500 iffusion-weighted image to BI-RADS classification obtained with conventional breast MRI protocol significantly improves the specificity for lesion classification and decreases the false-positive rate compared to BI-RADS alone.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to evaluate the diagnostic performance of visual assessment of diffusion-weighted images (DWI) obtained with a b value of 2500 s/mm2 in addition to a conventional magnetic resonance imaging (MRI) protocol to characterize breast lesions.

Materials and methods

This single-institution retrospective study included participants who underwent clinically indicated breast MRI and breast biopsy from May 2017 to February 2020. The examination included a conventional MRI protocol including DWI obtained with a b value of 50 s/mm2 (b50DWI) and a b value of 800 s/mm2 (b800DWI) and DWI obtained with a b value of 2500 s/mm2 (b2500DWI). Lesions were classified using Breast Imaging Reporting and Data Systems (BI-RADS) categories. Three independent radiologists assessed qualitatively the signal intensity within the breast lesions relative to breast parenchyma on b2500DW and b800DWI and measured the b50-b800-derived apparent diffusion coefficient (ADC) value. The diagnostic performances of BI-RADS, b2500DWI, b800DWI, ADC and of a model combining b2500DWI and BI-RADS were evaluated using receiver operating characteristic (ROC) curves analysis.

Results

A total of 260 patients with 212 malignant and 100 benign breast lesions were included. There were 259 women and one man with a median age of 53 years (Q1, Q3: 48, 66 years). b2500DWI was assessable in 97% of the lesions. Interobserver agreement for b2500DWI was substantial (Fleiss kappa = 0.77). b2500DWI yielded larger area under the ROC curve (AUC, 0.81) than ADC with a 1 × 10−3 mm2/s threshold (AUC, 0.58; P = 0.005) and than b800DWI (AUC, 0.57; P = 0.02). The AUC of the model combining b2500DWI and BI-RADS was 0.84 (95% CI: 0.79–0.88). Adding b2500DWI to BI-RADS resulted in a significant increase in specificity from 25% (95% CI: 17–35) to 73% (95% CI: 63–81) (P < 0.001) with a decrease in sensitivity from 100% (95% CI: 97–100) to 94% (95% CI: 90–97), (P < 0.001).

Conclusion

Visual assessment of b2500DWI has substantial interobserver agreement. Visual assessment of b2500DWI offers better diagnostic performance than ADC and b800DWI. Adding visual assessment of b2500DWI to BI-RADS improves the specificity of breast MRI and could avoid unnecessary biopsies.

El texto completo de este artículo está disponible en PDF.

Keywords : BI-RADS, Breast MRI, Diffusion imaging, High b value, Specificity

Abbreviations : 3D, ADC, AUC, BI-RADS, DWI, EPI, FN, FP, MRI, RESOLVE, ROC, SPAIR, TE, TN, TP, TR, VA, VIBE


Esquema


© 2023  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 104 - N° 9

P. 410-418 - septembre 2023 Regresar al número
Artículo precedente Artículo precedente
  • Improved detection of juxtacortical lesions using highly accelerated double inversion-recovery MRI in patients with multiple sclerosis
  • Morgane Lespagnol, Aurélien Massire, Imen Megdiche, Fabien Lespagnol, Pierre Brugières, Alain Créange, Alto Stemmer, Blanche Bapst
| Artículo siguiente Artículo siguiente
  • Value of aortic volumes assessed by automated segmentation of 3D MRI data in patients with thoracic aortic dilatation: A case-control study
  • Thomas Dietenbeck, Kevin Bouaou, Sophia Houriez-Gombaud-Saintonge, Jia Guo, Umit Gencer, Etienne Charpentier, Alain Giron, Alain De Cesare, Vincent Nguyen, Antonio Gallo, Samia Boussouar, Nicoletta Pasi, Gilles Soulat, Alban Redheuil, Elie Mousseaux, Nadjia Kachenoura

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.