Suscribirse

Detecting generative artificial intelligence in scientific articles: Evasion techniques and implications for scientific integrity - 29/11/23

Doi : 10.1016/j.otsr.2023.103706 
Guillaume-Anthony Odri a, b, , Diane Ji Yun Yoon b
a Service de chirurgie orthopédique et traumatologique, centre hospitalier universitaire Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France 
b Inserm U1132 BIOSCAR, université Paris-Cité, 75010 Paris, France 

Corresponding author at: Service de chirurgie orthopédique et traumatologique, centre hospitalier universitaire Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France.Service de chirurgie orthopédique et traumatologique, centre hospitalier universitaire Lariboisière2, rue Ambroise-ParéParis75010France

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Background

Artificial intelligence (AI) tools, although beneficial for data collection and analysis, can also facilitate scientific fraud. AI detectors can help resolve this problem, but their effectiveness depends on their ability to track AI progress. In addition, many methods of evading AI detection exist and their constantly evolving sophistication can make the task more difficult. Thus, from an AI-generated text, we wanted to: (1) evaluate the AI detection sites on a text generated entirely by the AI, (2) test the methods described for evading AI detection, and (3) evaluate the effectiveness of these methods to evade AI detection on the sites tested previously.

Hypothesis

Not all AI detection tools are equally effective in detecting AI-generated text and some techniques used to evade AI detection can make an AI-produced text almost undetectable.

Materials and methods

We created a text with ChatGPT-4 (Chat Generative Pre-trained Transformer) and submitted it to 11 AI detection web tools (Originality, ZeroGPT, Writer, Copyleaks, Crossplag, GPTZero, Sapling, Content at scale, Corrector, Writefull et Quill), before and after applying strategies to minimise AI detection. The strategies used to minimize AI detection were the improvement of command messages in ChatPGT, the introduction of minor grammatical errors such as comma deletion, paraphrasing, and the substitution of Latin letters with similar Cyrillic letters (а and о) which is also a method used elsewhere to evade the detection of plagiarism. We have also tested the effectiveness of these tools in correctly identifying a scientific text written by a human in 1960.

Results

From the initial text generated by the AI, 7 of the 11 detectors concluded that the text was mainly written by humans. Subsequently, the introduction of simple modifications, such as the removal of commas or paraphrasing can effectively reduce AI detection and make the text appear human for all detectors. In addition, replacing certain Latin letters with Cyrillic letters can make an AI text completely undetectable. Finally, we observe that in a paradoxical way, certain sites detect a significant proportion of AI in a text written by a human in 1960.

Discussion

AI detectors have low efficiency, and simple modifications can allow even the most robust detectors to be easily bypassed. The rapid development of generative AI raises questions about the future of scientific writing but also about the detection of scientific fraud, such as data fabrication.

Level of evidence

III Control case study.

El texto completo de este artículo está disponible en PDF.

Keywords : Generative artificial intelligence, Academic writing, Scientific fraud


Esquema


© 2023  Elsevier Masson SAS. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 109 - N° 8

Artículo 103706- décembre 2023 Regresar al número
Artículo precedente Artículo precedente
  • What is the rate of text generated by artificial intelligence over a year of publication in Orthopedics & Traumatology: Surgery & Research? Analysis of 425 articles before versus after the launch of ChatGPT in November 2022
  • Théophile Bisi, Anthony Risser, Philippe Clavert, Henri Migaud, Julien Dartus
| Artículo siguiente Artículo siguiente
  • Bibliometric evaluation of negative publications from orthopedics and traumatology from the ten most influential journals of 2009–2010 and 2019–2020: A comparative study with the “Orthopedics & Traumatology: Surgery & Research” journal, using the same analysis of submitted and accepted articles
  • Martin Bauters, Patrick Devos, Etienne L. Belzile, Sophie Putman, Henri Migaud, Julien Dartus

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.