Suscribirse

Phenotypic clustering of patients hospitalized in intensive cardiac care units: Insights from the ADDICT-ICCU study - 14/06/24

Doi : 10.1016/j.acvd.2024.03.004 
Kenza Hamzi a, b, Emmanuel Gall a, b, François Roubille c, Antonin Trimaille d, Meyer Elbaz e, Amine El Ouahidi f, Nathalie Noirclerc g, Damien Fard h, Benoit Lattuca i, Charles Fauvel j, Marc Goralski k, Sean Alvain l, Aures Chaib m, Nicolas Piliero n, Guillaume Schurtz o, Thibaut Pommier p, Claire Bouleti q, Christophe Tron j, Guillaume Bonnet r, Pascal Nhan s, t, Simon Auvray u, Antoine Léquipar a, b, Jean-Guillaume Dillinger a, b, Eric Vicaut b, v, Patrick Henry a, b, Solenn Toupin a, b, Théo Pezel a, b,
for the

ADDICT-ICCU Investigators1

  The ADDICT-ICCU investigators are listed in Appendix A.

a Inserm MASCOT – UMRS 942, Department of Cardiology, University Hospital of Lariboisière, Université Paris-Cité, Assistance publique–Hôpitaux de Paris (AP–HP), 75010 Paris, France 
b Department of Data Science, Machine Learning and Artificial Intelligence in Health, DATA-TEMPLE Laboratory, University Hospital of Lariboisière (AP–HP), 75010 Paris, France 
c Inserm, CNRS, PhyMedExp, Cardiology Department, INI-CRT, Université de Montpellier, CHU de Montpellier, 34295 Montpellier, France 
d Department of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, 67000 Strasbourg, France 
e Intensive Cardiac Care Unit, Rangueil University Hospital, Toulouse, France 
f Department of Cardiology, University Hospital of Brest, 29609 Brest cedex, France 
g Service de Cardiologie, Centre Hospitalier Annecy-Genevois, 74370 Épagny-Metz-Tessy, France 
h Intensive Cardiac Care Unit, University Hospital Henri-Mondor, Créteil, France 
i Department of Cardiology, Nîmes University Hospital, Montpellier University, Nîmes, France 
j Inserm U1096, Department of Cardiology, Université de Rouen-Normandie, CHU de Rouen, 76000 Rouen, France 
k Service de Cardiologie, Centre Hospitalier d’Orleans, Orléans, France 
l Service de Cardiologie, Centre Hospitalier de Saintes, Saintes, France 
m Service de Cardiologie, Centre Hospitalier de Montreuil, Montreuil, France 
n Service de Cardiologie, CHU de Grenoble-Alpes, Grenoble, France 
o Department of Cardiology, University Hospital of Lille, Lille, France 
p Department of Cardiology, University Hospital, Dijon, France 
q Department of Cardiology, University Hospital of Poitiers, 86000 Poitiers, France 
r Inserm, Inrae, C2VN, Service de Cardiologie Interventionnelle, Aix-Marseille Université, CHU de Timone, AP–HM, Marseille, France 
s Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France 
t Service de Cardiologie, Hôpital Saint-Antoine, Assistance publique–Hôpitaux de Paris, Paris, France 
u Department of Cardiology, Felix-Guyon University Hospital, Saint-Denis, Reunion 
v Unité de Recherche Clinique, Hôpital Fernand-Widal, AP–HP, 75010 Paris, France 

Corresponding author. Department of Cardiology, Hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France.Department of Cardiology, Hôpital Lariboisière2, rue Ambroise-ParéParis75010France

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Graphical abstract




El texto completo de este artículo está disponible en PDF.

Highlights

We included consecutive patients admitted to intensive cardiac care units.
Unsupervised clustering analysis identified four phenogroups based on clinical, biological, and echocardiographic characteristics.
These phenogroups have different clinical profiles and rates if in-hospital major adverse events.
Each phenogroup may represent a more homogeneous subset of patients with similar cardiovascular pathophysiology and in-hospital risk profiles.

El texto completo de este artículo está disponible en PDF.

Abstract

Background

Intensive cardiac care units (ICCUs) were created to manage ventricular arrhythmias after acute coronary syndromes, but have diversified to include a more heterogeneous population, the characteristics of which are not well depicted by conventional methods.

Aims

To identify ICCU patient subgroups by phenotypic unsupervised clustering integrating clinical, biological, and echocardiographic data to reveal pathophysiological differences.

Methods

During 7–22 April 2021, we recruited all consecutive patients admitted to ICCUs in 39 centers. The primary outcome was in-hospital major adverse events (MAEs; death, resuscitated cardiac arrest or cardiogenic shock). A cluster analysis was performed using a Kamila algorithm.

Results

Of 1499 patients admitted to the ICCU (69.6% male, mean age 63.3±14.9 years), 67 (4.5%) experienced MAEs. Four phenogroups were identified: PG1 (n=535), typically patients with non-ST-segment elevation myocardial infarction; PG2 (n=444), younger smokers with ST-segment elevation myocardial infarction; PG3 (n=273), elderly patients with heart failure with preserved ejection fraction and conduction disturbances; PG4 (n=247), patients with acute heart failure with reduced ejection fraction. Compared to PG1, multivariable analysis revealed a higher risk of MAEs in PG2 (odds ratio [OR] 3.13, 95% confidence interval [CI] 1.16–10.0) and PG3 (OR 3.16, 95% CI 1.02–10.8), with the highest risk in PG4 (OR 20.5, 95% CI 8.7–60.8) (all P<0.05).

Conclusions

Cluster analysis of clinical, biological, and echocardiographic variables identified four phenogroups of patients admitted to the ICCU that were associated with distinct prognostic profiles.

Trial registration

ClinicalTrials.gov identifier: NCT05063097.

El texto completo de este artículo está disponible en PDF.

Keywords : Clustering analysis, Unsupervised machine learning, Cardiac intensive care unit, Acute cardiac event, Heart failure


Esquema


© 2024  Elsevier Masson SAS. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 117 - N° 6-7

P. 392-401 - juin 2024 Regresar al número
Artículo precedente Artículo precedente
  • Molecular genetic screening after non-ischaemic sudden cardiac arrest and no overt cardiomyopathy in real life: A major tool for the aetiological diagnostic work-up
  • Orianne Weizman, Estelle Gandjbakhch, Isabelle Magnin-Poull, Julie Proukhnitzky, Céline Bordet, Aurélien Palmyre, Adrien Bloch, Véronique Fressart, Philippe Charron
| Artículo siguiente Artículo siguiente
  • Evaluation of new predictive scores for sudden cardiac death in childhood hypertrophic cardiomyopathy in a French cohort
  • Pierre-Alexandre Fontanges, Christelle Marquie, Ali Houeijeh, Jean-Benoît Baudelet, Adélaïde Richard, Christian Amenyah, Sophie Lucidarme, Mathilde Bonnet, Alexandre Delarue, Saïd Bichali, Nala Abou Assi, Sylvestre Marechaux, Aymeric Menet, Guy Vaksmann, François Godart, Olivia Domanski

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.