Suscribirse

Recent advances in sMRI and artificial intelligence for presurgical planning in focal cortical dysplasia: A systematic review - 21/08/25

Doi : 10.1016/j.neurad.2025.101359 
AmirHossein Mahmoudi a, b, Arshia Alizadeh a, b, Zohreh Ganji a, b, Hoda Zare a, c,
a Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 
b Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran 
c Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran 

Corresponding author.

Highlights

Enhanced Detection Accuracy: AI, particularly deep learning models, significantly improves FCD detection, achieving sensitivities up to 97.1 % and specificities up to 84.3 %, outperforming conventional MRI interpretation.
Superior Performance in Type II FCD: Deep learning architectures (e.g., 3D CNNs) excel in detecting Type II FCD lesions, with sensitivity as high as 97.1 %, compared to lower sensitivity for Type I (47–68 %) and Type III (72–91 %) subtypes.
Multimodal MRI Integration: Combining advanced MRI sequences (e.g., FLAIR, MP2RAGE) with AI enhances lesion conspicuity by 12–15 %, though scanner-dependent variability (1.5T vs. 3T) remains a challenge.
Human-AI Collaboration: Hybrid frameworks combining AI pre-screening with radiologist validation boost detection rates by 18 %, bridging the gap between automated analysis and clinical expertise.
Clinical and Technical Challenges: Suboptimal generalizability due to fragmented imaging protocols, underrepresented FCD subtypes in training data, and the "black box" nature of AI models underscore the need for standardized datasets and explainable algorithms.

El texto completo de este artículo está disponible en PDF.

Abstract

Background

Focal Cortical Dysplasia (FCD) is a leading cause of drug-resistant epilepsy, particularly in children and young adults, necessitating precise presurgical planning. Traditional structural MRI often fails to detect subtle FCD lesions, especially in MRI-negative cases. Recent advancements in Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), have the potential to enhance FCD detection's sensitivity and specificity.

Methods

This systematic review, following PRISMA guidelines, searched PubMed, Embase, Scopus, Web of Science, and Science Direct for articles published from 2020 onwards, using keywords related to “Focal Cortical Dysplasia,” “MRI,” and “Artificial Intelligence/Machine Learning/Deep Learning.” Included were original studies employing AI and structural MRI (sMRI) for FCD detection in humans, reporting quantitative performance metrics, and published in English. Data extraction was performed independently by two reviewers, with discrepancies resolved by a third.

Results

The included studies demonstrated that AI significantly improved FCD detection, achieving sensitivity up to 97.1 % and specificities up to 84.3 % across various MRI sequences, including MPRAGE, MP2RAGE, and FLAIR. AI models, particularly deep learning models, matched or surpassed human radiologist performance, with combined AI-human expertise reaching up to 87 % detection rates. Among 88 full-text articles reviewed, 27 met inclusion criteria. The studies emphasized the importance of advanced MRI sequences and multimodal MRI for enhanced detection, though model performance varied with FCD type and training datasets.

Conclusion

Recent advances in sMRI and AI, especially deep learning, offer substantial potential to improve FCD detection, leading to better presurgical planning and patient outcomes in drug-resistant epilepsy. These methods enable faster, more accurate, and automated FCD detection, potentially enhancing surgical decision-making. Further clinical validation and optimization of AI algorithms across diverse datasets are essential for broader clinical translation.

El texto completo de este artículo está disponible en PDF.

Keywords : Focal Cortical Dysplasia, Structural MRI, Artificial Intelligence, Machine Learning, Deep Learning, Pre-surgical Planning, Epilepsy, Systematic Review

Abbreviations : AI, ANN, AUC, CNN, DL, DT, EEG, FCD, FLAIR, ILAE, ML, MP2RAGE, MPRAGE, MRI, MEG, MELD, Qmri, RoB, ROC, sMRI, SVM, T1WI, T2WI, VBM, XAI


Esquema


© 2025  Elsevier Masson SAS. Reservados todos los derechos.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 52 - N° 5

Artículo 101359- septembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Single-stent strategy for a dissected carotid loop in acute tandem occlusion: Technical considerations
  • Jean Papaxanthos, Malgorzata Milnerowicz, Xavier Barreau, Omer Eker, Jerome Berge, Gaultier Marnat, Thomas Courret
| Artículo siguiente Artículo siguiente
  • The Role of MRI as a key evaluator of mesenchymal stem Cell Therapy in Multiple Sclerosis: A systematic review and meta-analysis
  • Mohammadreza Elhaie, Abolfazl Koozari, Mohammadhossein Mozafari, Iraj Abedi

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.