Suscribirse

BrainAGE latent representation clustering is associated with longitudinal disease progression in early-onset Alzheimer’s disease - 21/08/25

Doi : 10.1016/j.neurad.2025.101365 
Dorian Manouvriez a, b, , Grégory Kuchcinski a, c, d, Vincent Roca a, Adeline Rollin Sillaire e, f, Maxime Bertoux c, e, Xavier Delbeuck a, c, d, Jean-Pierre Pruvo a, c, d, Simon Lecerf c, e, f, Florence Pasquier c, e, f, Thibaud Lebouvier c, e, f, Renaud Lopes a, c
a UAR 2014-US 41-PLBS-Plateformes lilloises en Biologie & Santé, University of Lille, Lille, France 
b SIEMENS HEALTHCARE SAS, Courbevoie, France 
c INSERM, U1172-LilNCog-Lille Neuroscience & Cognition, University of Lille, Lille, France 
d Department of Neuroradiology, CHU Lille, F-59000 Lille, France 
e Memory Center, DISTALZ, Lille, France 
f Neurology Department, Lille University Medical Center, Lille, France 

Corresponding author at: rue Emile Laine, 59000, Lille, France.rue Emile LaineLille59000France

Abstract

Introduction

Early-onset Alzheimer’s disease (EOAD) population is a clinically, genetically and pathologically heterogeneous condition. Identifying biomarkers related to disease progression is crucial for advancing clinical trials and improving therapeutic strategies. This study aims to differentiate EOAD patients with varying rates of progression using Brain Age Gap Estimation (BrainAGE)-based clustering algorithm applied to structural magnetic resonance images (MRI).

Methods

A retrospective analysis of a longitudinal cohort consisting of 142 participants who met the criteria for early-onset probable Alzheimer’s disease was conducted. Participants were assessed clinically, neuropsychologically and with structural MRI at baseline and annually for 6 years. A Brain Age Gap Estimation (BrainAGE) deep learning model pre-trained on 3,227 3D T1-weighted MRI of healthy subjects was used to extract encoded MRI representations at baseline. Then, k-means clustering was performed on these encoded representations to stratify the population. The resulting clusters were then analyzed for disease severity, cognitive phenotype and brain volumes at baseline and longitudinally.

Results

The optimal number of clusters was determined to be 2. Clusters differed significantly in BrainAGE scores (5.44 [± 8] years vs 15.25 [± 5 years], p < 0.001). The high BrainAGE cluster was associated with older age (p = 0.001) and higher proportion of female patients (p = 0.005), as well as greater disease severity based on Mini Mental State Examination (MMSE) scores (19.32 [±4.62] vs 14.14 [±6.93], p < 0.001) and gray matter volume (0.35 [±0.03] vs 0.32 [±0.02], p < 0.001). Longitudinal analyses revealed significant differences in disease progression (MMSE decline of -2.35 [±0.15] pts/year vs -3.02 [±0.25] pts/year, p = 0.02; CDR 1.58 [±0.10] pts/year vs 1.99 [±0.16] pts/year, p = 0.03).

Conclusion

K-means clustering of BrainAGE encoded representations stratified EOAD patients based on varying rates of disease progression. These findings underscore the potential of using BrainAGE as a biomarker for better understanding and managing EOAD.

El texto completo de este artículo está disponible en PDF.

Keywords : Early-onset Alzheimer’s disease, Brain age gap estimation, Clustering, Magnetic resonance imaging

Abbreviations : Alzheimer’s disease, artificial intelligence, brain reserve, brain age gap estimation, clinical dementia rating scale, clinical dementia rating scale sum of boxes, cortical total volume, cerebrospinal fluid, early-onset Alzheimer’s disease, hippocampal sparing, intracranial volume, late-onset Alzheimer’s disease, limbic predominant, mean absolute error, mini mental state examination, magnetic resonance imaging, predicted age difference, stochastic gradient descent, typical Alzheimer’s disease, visual association test


Esquema


© 2025  The Authors. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 52 - N° 5

Artículo 101365- septembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • The Role of MRI as a key evaluator of mesenchymal stem Cell Therapy in Multiple Sclerosis: A systematic review and meta-analysis
  • Mohammadreza Elhaie, Abolfazl Koozari, Mohammadhossein Mozafari, Iraj Abedi

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2025 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.