Enhancing neuromolecular imaging classification in low-data regimes with generative machine learning: A case study in HDAC PET/MR imaging of alcohol use disorder - 23/08/25

Doi : 10.1016/j.neuri.2025.100225 
Tyler N. Meyer a, Olga Andreeva c, Roger D. Weiss b, e, Wei Ding d, Iris Shen a, Changning Wang a, Ping Chen c, Tewodros Mulugeta Dagnew a,
a Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 
b Department of Psychiatry, Harvard Medical School, Boston, MA, USA 
c Department of Engineering, University of Massachusetts Boston, Boston, MA, USA 
d Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA 
e Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, MA, USA 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Introduction

Positron Emission Tomography (PET) is a vital modality for investigating brain related disorders. However, data scarcity especially for novel molecular targets like neuroepigenetic enzymes combined with difficult-to-recruit patient populations limits the development of machine learning (ML) models. Our primary objective is to enhance single-subject classification of neuromolecular imaging data and facilitate biomarker discovery. We demonstrate our approach using histone deacetylase (HDAC) PET/MR imaging in Alcohol Use Disorder (AUD).

Methods

We propose Catalysis Training pipeline , a framework that augments real imaging data with high-quality synthetic data generated by a Wasserstein Conditional Generative Adversarial Network (WCGAN). Using [ 11 C]Martinostat PET/MR imaging, we extracted 1-D standardized uptake value ratio (SUVR) tabular features representing HDAC enzyme expression density across eight cingulate subregions. These were used to train and test ML classifiers, including Support Vector Machine (SVM), XGBoost, and Random Forest, under leave-one-out cross-validation.

Results

Integrating synthetic data in the training process improved classification accuracy significantly: +26% for XGBoost and Random Forest (from 59% to 85%), and +18% for SVM (from 70% to 88%). Synthetic samples improved model generalizability. Key hemispheric and subregional cingulate HDAC patterns were also identified as potential biomarkers.

Conclusion

Our results demonstrate that generative AI can help overcome data scarcity in low-data regime neuroimaging applications. Catalysis Training provides a scalable strategy to enhance ML-driven biomarker discovery and disease classification, especially for rare or difficult-to-study disorders like AUD. Clinically, cingulate HDAC expression measured by [ 11 C]Martinostat PET/MR shows promise as an objective biomarker for AUD, complementing DSM-based diagnosis and informing novel treatment strategies.

El texto completo de este artículo está disponible en PDF.

Graphical abstract




El texto completo de este artículo está disponible en PDF.

Highlights

Addressed low-data regime challenge in neuromolecular PET/MR imaging biomarker research using generative AI.
Application to class I histone deacetylase (HDAC) in vivo imaging in alcohol use disorder (AUD).
Proposed Catalysis Training approach combining real and synthetic data in training to boost neuromolecular imaging classifiers.
Leveraged WCGAN to generate high-quality synthetic low-throughput 1-D HDAC PET imaging feature vectors (SUVR).
Identified hemispheric and subregional cingulate HDAC patterns as potential biomarkers for AUD using [ 11 C]Martinostat radiotracer.

El texto completo de este artículo está disponible en PDF.

Esquema


© 2025  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 5 - N° 4

Artículo 100225- décembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Exploring KAN as a next-generation replacement for MLPs in EEG-based seizure detection
  • Eman Allogmani
| Artículo siguiente Artículo siguiente
  • Morphometric characterization of early- and late-onset Parkinson's disease: An ROI-based study of classification and correlation
  • Sadhana Kumari, Bharti Rana, Shefali Chaudhary, Roopa Rajan, S. Senthil Kumaran, Achal Kumar Srivastava, Leve Joseph Devarajan

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.