Suscribirse

Efficacy of a deep learning-based software for chest X-ray analysis in an emergency department - 02/09/25

Doi : 10.1016/j.diii.2025.03.007 
Sathiyamurthy Selvam a, Olivier Peyrony b, Arben Elezi a, b, Adelia Braganca b, Anne-Marie Zagdanski a, Lucie Biard c, d, Jessica Assouline a, Guillaume Chassagnon e, f, Guillaume Mulier c, d, Constance de Margerie-Mellon a, g,
a Department of Radiology, AP-HP, Hôpital Saint-Louis, 75010 Paris, France 
b Emergency Department, AP-HP, Hôpital Saint-Louis, 75010, Paris, France 
c ECSTRRA team UMR 1342, INSERM, Hôpital Saint-Louis, 75010 Paris, France 
d Department of Biostatistics and Medical Informatics, Hôpital Saint-Louis, 75010 Paris, France 
e Department of Radiology, Hôpital Cochin, AP-HP, 75014, France 
f Université Paris Cité, Faculté de Médecine, 75006 Paris, France 
g Université Paris Cité, PARCC UMRS 970, INSERM, 75015 Paris, France 

Corresponding author.

Highlights

Using a deep learning-based software to read chest X-ray increases sensitivity for identifying consolidation, pleural effusion and pulmonary nodules.
There is a minimal decrease in specificity for identifying chest X-rays with lung nodule and mediastinal/hilar masses with a deep learning-based software.
Inter-observer agreement is improved with the use of a deep learning-based software for all abnormalities included in its detection tasks.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to evaluate the efficacy of a deep learning (DL)-based computer-aided detection (CAD) system for the detection of abnormalities on chest X-rays performed in an emergency department setting, where readers have access to relevant clinical information.

Materials and methods

Four hundred and four consecutive chest X-rays performed over a two-month period in patients presenting to an emergency department with respiratory symptoms were retrospectively collected. Five readers (two radiologists, three emergency physicians) with access to clinical information were asked to identify five abnormalities (i.e., consolidation, lung nodule, pleural effusion, pneumothorax, mediastinal/hilar mass) in the dataset without assistance, and then after a 2-week period, with the assistance of a DL-based CAD system. The reference standard was a chest X-ray consensus review by two experienced radiologists. Reader performances were compared between the reading sessions, and interobserver agreement was assessed using Fleiss’ kappa test.

Results

The dataset included 118 occurrences of the five abnormalities in 103 chest X-rays. The CAD system improved sensitivity for consolidation, pleural effusion, and nodule, with respective absolute differences of 8.3 % (95 % CI: 3.8–12.7; P < 0.001), 7.9 % (95 % CI: 1.7–14.1; P = 0.012), and 29.5 % (95 % CI: 19.8–38.2; P < 0.001), respectively. Specificity was greater than 89 % for all abnormalities and showed a minimal but significant decrease with DL for nodules and mediastinal/hilar masses (-1.8 % [95 % CI: -2.7 – -0.9]; P < 0.001 and -0.8 % [95 % CI: -1.5 – -0.2]; P = 0.005). Inter-observer agreement improved with DL, with kappa values ranging from 0.40 [95 % CI: 0.37–0.43] for mediastinal/hilar mass to 0.84 [95 % CI: 0.81–0.87] for pneumothorax.

Conclusion

Our results suggest that DL-assisted reading increases the sensitivity for detecting important chest X-ray abnormalities in the emergency department, even when clinical information is available to the radiologist.

El texto completo de este artículo está disponible en PDF.

Keywords : Artificial intelligence, Chest radiograph, Deep learning algorithm, Emergency department, Interobserver agreement

Abbreviations : CAD, CI, CXR, DICOM, DL, ED, PACS


Esquema


© 2025  Société française de radiologie. Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 106 - N° 9

P. 299-311 - septembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Laser-focused ablative therapy for prostate cancer and benign prostatic hyperplasia: A review of current applications and future directions
  • François Cornud, Eric M Walser, Katelijne CC de Bie, Arnaud Lefevre, Marc Galiano
| Artículo siguiente Artículo siguiente
  • Relaxing the PI-RADS dominant sequence rule improves the characterization of high-grade prostate cancer on multiparametric MRI
  • Pierre Baseilhac, Nicolas Romain-Scelle, Amna Klich, Sébastien Crouzet, Marc Colombel, Alain Ruffion, Muriel Rabilloud, Olivier Rouvière

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.