Revealing spatiotemporal neural activation patterns in electrocorticography recordings of human speech production by mutual information - 04/09/25

Doi : 10.1016/j.neuri.2025.100232 
Julio Kovacs a, Dean Krusienski b, Minu Maninder c, Willy Wriggers a,
a Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, United States of America 
b Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America 
c Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, United States of America 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Background

Spatiotemporal mapping of neural activity during continuous speech production has been traditionally approached using correlation coefficient (CC) analysis between cortical signals and speech recordings. A prior study employed this approach using electrocorticography (ECoG) data from participants who underwent invasive intracranial monitoring for epilepsy. However, CC cannot detect nonlinear relationships and is dominated by the correspondence between periods of silence and of non-silence.

New Method

We introduce the mutual information (MI) measure, which can capture both linear and nonlinear dependencies. We validated CC and MI on the sub-second spatiotemporal brain activity recorded during continuous speech tasks. To refine the results, we also implemented a novel “masked analysis”, which excludes periods of silence, and compared it with the standard (unmasked) analysis.

Results

Our findings show that previous results, obtained through more complex statistical methods, can be reproduced using CC with an appropriate threshold cutoff. Moreover, both standard MI and CC are influenced by broad transitions between silence and speech, but masking allows the detection of intrinsic correspondences between the two signals, revealing more localized activity.

Comparison with existing methods

Compared to the standard CC, masked MI highlights early prefrontal and premotor activations emerging ∼440 ms before speech onset. It also identifies sharper, anatomically coherent activations in key speech-related areas, demonstrating improved sensitivity to the fine-grained spatiotemporal dynamics of continuous speech production.

Conclusion

These findings deepen our understanding of the neural pathways underlying speech and underscore the potential of masked MI for advancing neural decoding in future speech-based brain-computer interface applications.

El texto completo de este artículo está disponible en PDF.

Highlights

Mutual information (MI) captures nonlinear neural dynamics missed by traditional cross correlation (CC) methods.
Masked MI detects earlier, more precise brain activity than standard (unmasked) methods.
MI yields higher signal clarity than CC, enhancing accuracy of speech decoding.
Masking silences improves spatial accuracy in mapping speech-related brain areas.
Findings support masked MI's use in real-time BCIs for speech in clinical settings.

El texto completo de este artículo está disponible en PDF.

Keywords : Electrocorticography (ECoG), Mutual information, Neural signal analysis, Spatiotemporal mapping, Brain-computer interface (BCI), Masked analysis


Esquema


© 2025  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 5 - N° 4

Artículo 100232- décembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Morphometric characterization of early- and late-onset Parkinson's disease: An ROI-based study of classification and correlation
  • Sadhana Kumari, Bharti Rana, Shefali Chaudhary, Roopa Rajan, S. Senthil Kumaran, Achal Kumar Srivastava, Leve Joseph Devarajan
| Artículo siguiente Artículo siguiente
  • A comparative study of hybrid decision tree–deep learning models in the detection of intracranial arachnoid cysts
  • Aziz Ilyas Ozturk, Osman Yıldırım, Ebru İdman, Emrah İdman

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.