Deep learning for fetal brain imaging: A systematic review and framework towards privacy-preserving neurodevelopmental informatics - 04/11/25

Doi : 10.1016/j.neuri.2025.100241 
Sayma Alam Suha , Rifat Shahriyar
 Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh 

Corresponding author.

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

Abstract

Fetal neurodevelopment is a complex process of neural growth during pregnancy, where early detection of abnormalities is vital, and deep learning offers promising techniques for this purpose. The objective of this systematic review is to investigate deep learning applications in fetal neurodevelopment, aiming to synthesize cutting-edge research, examine methodologies, identify research gaps, and propose a federated learning framework. Following PRISMA 2020 guidelines, 55 peer-reviewed articles were selected from an initial 900 records across major databases and additional sources where each article was examined through six specific data extraction criteria. Peer-reviewed articles from 2005 to 2025, specifically those exploring automated deep learning for fetal neurodevelopment using clinical images were included, while non-deep learning analyses were excluded. Risk of bias was qualitatively assessed based on design, data diversity, validation, and reporting. Key scopes of the studies included brain segmentation and regionalization (50.91%), structural measurement (12.73%), image reconstruction, enhancement and synthesis (21.82%) and predictive modeling and clinical classification (14.55%) which also distinguishes between tasks involving pixel-level analysis and image-level predictions. The 55 included studies used diverse datasets (753 to 433,000 images) as well as synthetic image data in some recent works covering wide-ranging gestational ages, mainly using MRI and ultrasound images. The systematic analysis explicitly categorizes each study by task type, applied methodology (U-Net variants, transformer-based models, CNNs, implicit neural representations), and corresponding evaluation metrics—segmentation (DSC, IoU, HD95), classification (Accuracy, Precision, AUC), regression (MAE, RMSE, R 2 ), and reconstruction (PSNR, SSIM), facilitating standardized performance comparisons and establishing clear benchmarks for future research in automated fetal brain imaging. Significant gaps that were identified include inadequate data diversity, privacy measures, limited clinical interpretability and validity of AI models, and insufficient integration of multimodal data. To address these challenges, a unified framework is proposed that integrates multimodal data fusion, explainable artificial intelligence (XAI) paradigms, and federated learning architectures complemented by synthetic data generation techniques to ensure robust privacy preservation in real-world application. This work was not specifically funded, and the review was not registered.

El texto completo de este artículo está disponible en PDF.

Keywords : Deep learning, Fetal neurodevelopment, Federated learning, Explainable AI


Esquema


© 2025  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Vol 5 - N° 4

Artículo 100241- décembre 2025 Regresar al número
Artículo precedente Artículo precedente
  • Functional MRI in hypertension – A systematic review of brain connectivity, regional activity, and cognitive impairment
  • Sathya Sabina Muthu, Suresh Sukumar, Rajagopal Kadavigere, K.N. Shivashankar, K. Vaishali, M.G. Ramesh Babu, Hari Prakash Palaniswamy, Abhimanyu Pradhan, Winniecia Dkhar, Nitika C. Panakkal, Sneha Ravichandran, Dilip Shettigar, Poovitha Shruthi Paramashiva
| Artículo siguiente Artículo siguiente
  • Decoding memory with explainable AI: A large-scale EEG-based machine learning study of encoding vs. retrieval
  • Mohammed Tawshif Hossain, Adnan Sami Sarker, Arnab Chowdhury, Rajesh Mitra, Raiyan Rahman, M.R.C. Mahdy

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.