Artificial Intelligence for Simplified Patient-centered Dosimetry in Radiopharmaceutical Therapies - 19/11/25
, Fereshteh Yousefirizi, PhD b, Yizhou Chen, MSc a, Yazdan Salimi, PhD c, Robert Seifert, MBA a, Ali Afshar-Oromieh, MD a, Carlos Uribe, PhD b, d, Axel Rominger, MD a, Habib Zaidi, PhD c, Arman Rahmim, PhD b, e, Kuangyu Shi, PhD aResumen |
Patient-specific dosimetry is currently a clinical need to evaluate lesion and organs at risk evolution in radiopharmaceutical therapy (RPT). Conventional dosimetry protocols are often time and/or computationally intensive, which dampers the applicability or real personalized dosimetry. Deep learning solutions for time-integrated activity to dose conversion present alternatives to costly Monte Carlo simulations while not relying on generic anthropomorphic models that are agnostic of the patient’s anatomy. Artificial intelligence-enabled segmentation strategies support the evolution of personalized, image-guided RPT planning and monitoring. Quantification of radiopharmaceutical uptake and response at the lesion level enable clinicians to assess therapeutic efficacy and adapt treatment accordingly.
El texto completo de este artículo está disponible en PDF.Keywords : Artificial intelligence (AI), Theranostics, Dosimetry, Radiopharmaceutical therapy (RPT), Patient-friendly dosimetry
Esquema
Vol 21 - N° 1
P. 73-88 - janvier 2026 Regresar al númeroBienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.
¿Ya suscrito a @@106933@@ revista ?
