Suscribirse

Deep-learning image reconstruction algorithms for CT: A task-based image quality assessment of four CT systems using a phantom - 15/01/26

Doi : 10.1016/j.diii.2026.01.003 
Joël Greffier , Alexa Liogier, Maxime Pastor, Fabien de Oliveira, Quentin Chaine, Skander Sammoud, Jean Paul Beregi, Djamel Dabli
 IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France 

Corresponding author.
En prensa. Pruebas corregidas por el autor. Disponible en línea desde el Thursday 15 January 2026

Highlights

Deep-learning image reconstruction algorithms have been developed to compensate for the limitations of the iterative reconstruction algorithms, particularly with regard to changes in noise texture.
Compared to iterative reconstruction algorithms, deep-learning image reconstruction algorithms reduce noise magnitude and improve lesion detectability while maintaining, or even improving, noise texture and spatial resolution.
The emergence and development of new deep-learning image reconstruction algorithms opens up many possibilities for optimizing CT protocols and improving radiological care for patients.

El texto completo de este artículo está disponible en PDF.

Abstract

Purpose

The purpose of this study was to assess the performance of iterative reconstruction (IR) and deep-learning image reconstruction (DLR) algorithms developed by four CT vendors in terms of image quality.

Materials and methods

Acquisitions were performed on an image quality phantom at three dose levels (1.8, 6 and 11 mGy) using four CT systems (further referred to as G-CT, P-CT, U-CT, and C-CT). For each CT, raw data were reconstructed using the commonly used soft tissue kernel and level for IR and DLR algorithms. Noise power spectrum and task-based transfer function were computed to assess noise magnitude, noise texture (f av ) and spatial resolution, respectively. Detectability indexes ( d ’) were computed to model the detection of two abdominal lesions.

Results

Compared to IR, noise magnitude reduction with DLR was similar for all dose levels for G-CT (-21.1 ± 1.5 [standard deviation (SD)] %) and P-CT (-48.4 ± 0.1 [SD] %) but more pronounced at 1.8 mGy and decreased as the dose level increased for U-CT and C-CT. Noise texture was greater with DLR than IR at all dose levels for all CT systems, except for U-CT, which gave similar f av values. For both inserts, spatial resolution was better with DLR than with IR for all CT systems, except for the low-contrast insert with C-CT at 1.8 and 6 mGy and P-CT at 1.8 mGy. For both simulated lesions and all dose levels, d ’ values were greater with DLR than with IR by 77.5 ± 8.7 (SD) % for C-CT, 33.7 ± 5.6 (SD) % for G-CT, 112.7 ± 4.7 (SD) % for P-CT and from 158.3 % to 546.6 % on average for U-CT.

Conclusion

Compared to IR, DLR algorithms reduce the image noise and improve detectability whilst providing similar or better noise texture and spatial resolution.

El texto completo de este artículo está disponible en PDF.

Keywords : Deep-learning image reconstruction algorithm, Iterative reconstruction algorithm, Multidetector computed tomography, Phantom studies, Task-based image quality assessment

Abbreviations : C-CT, CT, CTDI vol , CNN, d ' , DLR, G-CT, HU, IR, NPS, P-CT, ROI, TTF, U-CT


Esquema


© 2026  The Author(s). Publicado por Elsevier Masson SAS. Todos los derechos reservados.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
El acceso al texto completo de este artículo requiere una suscripción.

¿Ya suscrito a @@106933@@ revista ?

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.