From text to code – Leveraging machine learning for neurology outpatient clinical coding - 19/01/26

Doi : 10.1016/j.neuri.2026.100257 
Elena Purcaru 1, 2, , Michael George 1, Matthew Stammers 1, 2, Christopher Kipps 1, 2
1 Department of Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, UK 
2 University of Southampton Faculty of Medicine, Southampton, UK 

Corresponding author: FAO Dr. Elena Purcaru, Neurology Department, Wessex Neuroscience Centre, University Hospital Southampton, Tremona Road, Southampton, SO166YD Neurology Department Wessex Neuroscience Centre University Hospital Southampton Tremona Road Southampton SO166YD

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.
Artículo gratuito.

Conéctese para beneficiarse!

En prensa. Manuscrito Aceptado. Disponible en línea desde el Monday 19 January 2026

Abstract

Background

Most neurological care is delivered in outpatient settings without mandated clinical coding. The clinical records remain stored as unstructured text with inconsistent formatting. There is a significant opportunity to increase the value of these data through automated clinical coding utilising natural language processing (NLP). While existing models for full ICD-10 clinical coding lack sufficient accuracy for clinical use, 60% of neurology outpatient cases fall into just five diagnostic categories. This suggests that a simplified coding system could enhance feasibility and serve as a foundation for more complex coding schemes.

Objective

We propose a simplified coding system of 29 codes for neurology outpatient episodes. We evaluate several machine learning methods in a supervised single-label classification task on real-world outpatient care notes.

Methods

We collected outpatient care notes created between 15 November 2018 and 2 December 2022. The training dataset included 14,917 care notes, most of which were annotated with ICD-10 codes during routine care and subsequently mapped to 29 simplified diagnostic categories. An external validation set of 1,042 randomly selected encounters was retrospectively coded.

Models included logistic regression, support vector machine, bidirectional LSTM, BERT-based models (DistilBERT, RoBERTa), and a generative large language model (LLM), Mistral 7B. All but the LLM were trained via 10-fold stratified cross-validation; final models were trained on the complete dataset.

Results

DistilBERT and RoBERTa outperformed traditional models, with F1-scores of 81.73 (95% CI: 79.02–84.13) and 81.16 (95% CI: 78.84–83.76), respectively. The LLM–DistilBERT hybrid performed worse than all but BiLSTM and produced “medical hallucinations,” making it unsuitable for clinical use. The training data were highly imbalanced. BERT-based models showed strong performance on high-frequency categories, with F1-scores over 85% for the top five classes. At a 0.85 confidence threshold, DistilBERT achieved 96% accuracy on 64% of the external validation set.

Conclusions

BERT-based NLP models perform well in classifying neurology outpatient clinic notes when a reduced set of diagnostic categories is used. In a human-in-the-loop workflow, such models can meaningfully reduce the manual coding workload while preserving accuracy. To our knowledge, this is the first applied study of automated clinical coding in neurology outpatient care.

El texto completo de este artículo está disponible en PDF.

Highlights

Developed and evaluated open-source NLP models for automated clinical coding of neurology outpatient letters.
Introduced a simplified coding system of 29 diagnostic categories, addressing data sparsity and class imbalance.
Fine-tuned DistilBERT achieved 81.7% F1-score, with 82.4% accuracy in external validation.
A human-in-the-loop workflow could reduce manual coding workload while matching average human coding accuracy; for example, operating with a 0.85 confidence threshold, DistilBERT can automatically code 64% of records with 96% accuracy, while low-confidence cases route to manual coding.
BERT-based models outperformed traditional methods (logistic regression, SVM, BiLSTM) for clinical text classification.
Large Language Models (LLMs) like Mistral 7B underperformed due to medical hallucinations and lack of output structure.
First applied example of automated clinical coding in neurology outpatient care, with potential for broader specialty adoption.
Future work should explore multi-label classification and cross-institution validation to enhance generalisability.

El texto completo de este artículo está disponible en PDF.

Keywords : neurology, clinical coding, clinical text classification, natural language processing


Esquema


© 2026  Publicado por Elsevier Masson SAS.
Añadir a mi biblioteca Eliminar de mi biblioteca Imprimir
Exportación

    Exportación citas

  • Fichero

  • Contenido

Bienvenido a EM-consulte, la referencia de los profesionales de la salud.

@@150455@@ Voir plus

Mi cuenta


Declaración CNIL

EM-CONSULTE.COM se declara a la CNIL, la declaración N º 1286925.

En virtud de la Ley N º 78-17 del 6 de enero de 1978, relativa a las computadoras, archivos y libertades, usted tiene el derecho de oposición (art.26 de la ley), el acceso (art.34 a 38 Ley), y correcta (artículo 36 de la ley) los datos que le conciernen. Por lo tanto, usted puede pedir que se corrija, complementado, clarificado, actualizado o suprimido información sobre usted que son inexactos, incompletos, engañosos, obsoletos o cuya recogida o de conservación o uso está prohibido.
La información personal sobre los visitantes de nuestro sitio, incluyendo su identidad, son confidenciales.
El jefe del sitio en el honor se compromete a respetar la confidencialidad de los requisitos legales aplicables en Francia y no de revelar dicha información a terceros.


Todo el contenido en este sitio: Copyright © 2026 Elsevier, sus licenciantes y colaboradores. Se reservan todos los derechos, incluidos los de minería de texto y datos, entrenamiento de IA y tecnologías similares. Para todo el contenido de acceso abierto, se aplican los términos de licencia de Creative Commons.