Although regular muscular exercise is known to have many beneficial effects, exercise results in an increased production of radicals and other forms of reactive oxygen species (ROS).4 Borzone G., Zhao B., Merola A.J. , y al. Detection of free radicals by electron spin resonance in rat diaphragm after resistive loading J Appl Physiol 1994 ; 77 : 812
Haga clic aquí para ir a la sección de Referencias, 8 Davies K., Quintanilha A., Brooks G. , y al. Free radicals and tissue damage produced by exercise Biochem Biophys Res Commun 1982 ; 107 : 1198 [cross-ref]
Haga clic aquí para ir a la sección de Referencias, 11 Halliwell B., Gutteridge J.M. Iron toxicity and oxygen radicals Free Radicals in Biology and Medicine New York: Oxford Univ. Press (1989).
1-276
Haga clic aquí para ir a la sección de Referencias, 29 O'Neill C.A., Stebbins C.L., Bonigut S. , y al. Production of hydroxyl radicals in contracting skeletal muscle of cats J Appl Physiol 1996 ; 81 : 1197
Haga clic aquí para ir a la sección de Referencias, 36 Reid M., Haack K., Franchek K. , y al. Reactive oxygen in skeletal muscle: I. Intracellular oxidant kinetics and fatigue in vitro J Appl Physiol 1992 ; 73 : 1797
Haga clic aquí para ir a la sección de Referencias In fact, evidence exists to implicate ROS as an underlying cause in exercise-induced disturbances in muscle homeostasis (e.g., redox status), which could result in muscle fatigue or injury.16 Ji L.L., Stratman F., Lardy H. Antioxidant enzyme systems in rat liver and skeletal muscle Arch Biochem Biophys 1988 ; 263 : 150
Haga clic aquí para ir a la sección de Referencias, 26 Nashawati E., Dimarco A., Supinski G. Effects produced by infusion of a free radical-generating solution into the diaphragm Am Rev Respir Dis 1993 ; 147 : 60 [cross-ref]
Haga clic aquí para ir a la sección de Referencias, 29 O'Neill C.A., Stebbins C.L., Bonigut S. , y al. Production of hydroxyl radicals in contracting skeletal muscle of cats J Appl Physiol 1996 ; 81 : 1197
Haga clic aquí para ir a la sección de Referencias, 37 Reid M., Shoji T., Moody M. , y al. Reactive oxygen in skeletal muscle: II. Extracellular release of free radicals J Appl Physiol 1992 ; 73 : 1805
Haga clic aquí para ir a la sección de Referencias, 41 Shindoh A., Dimarco A., Thomas A. , y al. Effect of N-acetylcysteine on diaphragm fatigue J Appl Physiol 1990 ; 68 : 2107
Haga clic aquí para ir a la sección de Referencias Given the potential role of ROS in contributing to muscle fatigue or injury, it is not surprising that skeletal muscle myocytes contain defense mechanisms to reduce the risk for oxidative damage. Two major classes of endogenous protective mechanisms (i.e., enzymatic and nonenzymatic antioxidants) work as a unit to reduce the harmful effects of ROS in cells. This article provides a brief overview of cellular antioxidants and summarizes the current understanding of the effects of nutritional antioxidants on exercise performance. This article begins with a discussion of the primary units that comprise the endogenous antioxidant defense system in cells.
El texto completo de este artículo está disponible en PDF.
© 1999
W. B. Saunders Company. Publicado por Elsevier Masson SAS. Todos los derechos reservados.© 1995