S'abonner

Development of Clinically Validated Artificial Intelligence Model for Detecting ST-segment Elevation Myocardial Infarction - 18/10/24

Doi : 10.1016/j.annemergmed.2024.06.004 
Sang-Hyup Lee, MD a, Kyu Lee Jeon, BS b, c, Yong-Joon Lee, MD a, Seng Chan You, MD b, c, , Seung-Jun Lee, MD a, Sung-Jin Hong, MD a, Chul-Min Ahn, MD a, Jung-Sun Kim, MD a, Byeong-Keuk Kim, MD a, Young-Guk Ko, MD a, Donghoon Choi, MD a, Myeong-Ki Hong, MD a
a Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea 
b Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea 
c Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea 

Corresponding Author.

Abstract

Study objective

Although the importance of primary percutaneous coronary intervention has been emphasized for ST-segment elevation myocardial infarction (STEMI), the appropriateness of the cardiac catheterization laboratory activation remains suboptimal. This study aimed to develop a precise artificial intelligence (AI) model for the diagnosis of STEMI and accurate cardiac catheterization laboratory activation.

Methods

We used electrocardiography (ECG) waveform data from a prospective percutaneous coronary intervention registry in Korea in this study. Two independent board-certified cardiologists established a criterion standard (STEMI or Not STEMI) for each ECG based on corresponding coronary angiography data. We developed a deep ensemble model by combining 5 convolutional neural networks. In addition, we performed clinical validation based on a symptom-based ECG data set, comparisons with clinical physicians, and external validation.

Results

We used 18,697 ECGs for the model development data set, and 1,745 (9.3%) were STEMI. The AI model achieved an accuracy of 92.1%, sensitivity of 95.4%, and specificity of 91.8 %. The performances of the AI model were well balanced and outstanding in the clinical validation, comparison with clinical physicians, and the external validation.

Conclusion

The deep ensemble AI model showed a well-balanced and outstanding performance. As visualized with gradient-weighted class activation mapping, the AI model has a reasonable explainability. Further studies with prospective validation regarding clinical benefit in a real-world setting should be warranted.

Le texte complet de cet article est disponible en PDF.

Plan


 Supervising editor: David L. Schriger, MD, MPH. Specific detailed information about possible conflict of interest for individual editors is available at editors.
 Author contributions: SCY and Y-GK conceptualized and supervised the overall study protocol. KLJ conducted data acquisition, processing, and machine learning modeling. S-HL and Y-JL confirmed the clinical accuracy of the data. S-HL and KLJ wrote the first draft of the manuscript. Y-JL, SCY, and Y-GK revised the manuscript further. All authors critically revised the draft for important intellectual content, had full access to all data in the study, and shared final responsibility for the decision to submit the manuscript for publication. S-HL, KLJ, and Y-JL contributed equally to this work. SCY takes responsibility for the article as a whole.
 Data sharing statement: The deidentified data, data dictionary, and analytic code for this study are available on reasonable request from the date of publication by contacting the corresponding author at chandryou@yuhs.ac.
 Authorship: All authors attest to meeting the four ICMJE.org authorship criteria: (1) Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND (2) Drafting the work or revising it critically for important intellectual content; AND (3) Final approval of the version to be published; AND (4) Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
 Funding and support: By Annals’ policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org/). This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI22C0452). SCY reports being a chief technology officer of PHI Digital Healthcare. The remaining authors have no conflict of interest relevant to this article to disclose.
 Please see page 541 for the Editor’s Capsule Summary of this article.
 A podcast for this article is available at www.annemergmed.com.
 Readers: click on the link to go directly to a survey in which you can provide KQ3P6VW to Annals on this particular article.


© 2024  American College of Emergency Physicians. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 84 - N° 5

P. 540-548 - novembre 2024 Retour au numéro
Article précédent Article précédent
  • Characterizing Acute Pulmonary Embolism Cases Diagnosed at an Emergency Department Revisit Using a Statewide Clinical Registry
  • Alexander T. Janke, Adrian D. Haimovich, Courtney W. Mangus, Christopher Fung, Neil Kamdar, Prashant V. Mahajan, Keith E. Kocher
| Article suivant Article suivant
  • Temperature Control Parameters Are Important: Earlier Preinduction Is Associated With Improved Outcomes Following Out-of-Hospital Cardiac Arrest
  • Rachel Beekman, Noah Kim, Christine Nguyen, George McGinniss, Yanhong Deng, Eva Kitlen, Gabriella Garcia, Charles Wira, Akhil Khosla, Jennifer Johnson, P. Elliott Miller, Sarah M. Perman, Kevin N. Sheth, David M. Greer, Emily J. Gilmore

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.