Machine learning approaches for cardiovascular disease prediction: A review - 14/06/25

Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder
Graphical abstract |
Highlights |
• | Comparison of machine learning and traditional methods in CVD prediction. |
• | Evaluation metrics: accuracy, precision, F1-score, sensitivity, specificity, AUC. |
• | Data collection and preprocessing: importance, sources, preprocessing techniques. |
• | Cross-validation: k-fold cross-validation. |
• | Current challenges: regulatory and ethical issues, deep learning interpretability. |
• | Future research: data preprocessing impact, data privacy, IoT integration. |
Abstract |
Cardiovascular disease is a leading cause of death worldwide and is associated with significant morbidity and mortality. The use of artificial intelligence techniques, particularly machine learning algorithms, has emerged as a transformative approach for enhancing early diagnostic accuracy of disease compared with conventional diagnostic methods. This systematic review examines three core aspects: (1) comparative analysis of current machine learning algorithms in early diagnosis of cardiovascular disease, (2) operational frameworks for clinical implementation, and (3) critical evaluation of regulatory compliance and ethical implications. It summarizes recent advancements in machine learning-based heart disease prediction, outlines a typical workflow for applying machine learning in clinical settings, and discusses the regulatory and ethical challenges associated with its implementation. Finally, this review explores potential directions for future research in this rapidly evolving field.
Le texte complet de cet article est disponible en PDF.Keywords : Machine learning, Cardiovascular disease, Classification, Prediction, Feature selection
Abbreviations : AI, AUC, CVD, EHR, ICD-11, IoT, ML, ROC, SMOTE
Plan
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?
