Médecine

Paramédical

Autres domaines


S'abonner

Intégration de l’élicitation d’experts dans une méthode de sélection de variables en Bayésien par la méthode de « power prior ». Application au cancer du colon - 19/04/19

Doi : 10.1016/j.respe.2019.03.097 
S. Boulet a, , M. Ursino a, P. Thall b, A. Burgun a, d, A. Zaanan c, S. Zohar a, A. Jannot a, d
a Inserm, U1138, Equipe 22, Centre de recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France 
b Anderson Cancer Center, Department of Biostatistics, Houston, Texas 
c Hôpital européen Georges-Pompidou, AP–HP, Département d’oncologie digestive, Paris, France 
d Hôpital européen Georges-Pompidou, AP–HP, Département informatique, biostatistique et santé publique, Paris, France 

Auteur correspondant.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Résumé

Introduction

Construire des outils d’aide à la décision en médecine nécessite d’identifier les variables pertinentes pour modéliser la décision médicale. À cette fin, les données expertes et les données patients constituent toutes deux des sources importantes d’information. Actuellement, des techniques d’apprentissage machine permettent de sélectionner les variables pertinentes utilisées pour la prise de décision à partir des données de soin de patients. Mais aucune méthode ne permet d’utiliser de manière conjointe données de soin et données expertes. Nous proposons une méthode qui introduit de l’information experte dans un modèle de sélection de variables. Nous nous plaçons dans le contexte des décisions médicales relatives à l’adaptation des doses d’Irinotecan pour le traitement du cancer colorectal métastatique.

Méthodes

Nous avons extrait les données de soin des patients ayant eu un protocole incluant de l’Irinotecan entre 2012 et 2017 à partir des dossiers patients informatisés de l’Hôpital Européen Georges Pompidou. Le service d’oncologie de cet hôpital a mis en place depuis 2012 un questionnaire standardisé collectant l’ensemble des informations nécessaires pour les adaptations de dose de chimiothérapie. Les données expertes proviennent des poids estimés par les experts associés aux variables impliquées dans les décisions de réduction de dose : nous avons demandé aux cliniciens experts d’estimer sur une échelle allant de 0 à 100 quels poids ils accordaient à chaque variable utilisée pour les adaptations de dose d’Irinotecan. Un échantillon de doses simulées a ensuite été généré à partir de ces poids élicités puis combiné aux données de réductions de doses observées via la méthode du « power prior » [1]. Nous avons modélisé le lien entre réductions de dose répétées, caractéristiques des patients et toxicités par le biais d’un modèle logistique à effets mixtes. La sélection de variables a ensuite été réalisée via le modèle « Stochastic Search Variable Selection »(SSVS) [2]. Les performances de cette méthode combinant information observée et information experte ont été comparées à celles de la méthode utilisant uniquement l’information observée pour notre cas d’utilisation, et une analyse de sensibilité basée sur le paramètre de « power prior » a été réalisée.

Résultats

Les poids élicités par les experts sont très variables. Les performances prédictives des différents modèles sont modérées avec un AUC proche de 0,7. Notre méthode permet de sélectionner des variables rares qui pourraient être omises sur la base des données observées seules et d’éliminer des variables qui semblent pertinentes à partir des données, mais avec des poids élicités faibles.

Conclusion

Nous présentons une méthode Bayésienne de sélection de variables incorporant l’information experte élicitée et les données réelles. La méthode sélectionne un ensemble de variables pertinentes pour modéliser le processus de décision médicale. Les poids élicités sont très variables selon les cliniciens ce qui souligne la variabilité des pratiques professionnelles.

Le texte complet de cet article est disponible en PDF.

Mots clés : Méthode Bayésienne de sélection de variables, Elicitation de poids de pertinence clinique, Méthode du power prior, Mesures répétées, Dossiers de santé informatisés


Plan


© 2019  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 67 - N° S3

P. S132-S133 - mai 2019 Retour au numéro
Article précédent Article précédent
  • Retour d’expérience d’une revue de la littérature de scores pronostiques : application à la neuro-réanimation
  • J. Simon-Pimmel, M. Leger, L. Bodet-Contentin, R. Cinotti, F. Feuillet, D. Frasca, Y. Foucher, E. Dantan
| Article suivant Article suivant
  • Effet causal des comorbidités sur la survie des patients traités pour lymphomes B diffus à grandes cellules en ex-région Midi-Pyrénées en présence de facteur de confusion intermédiaire dépendant de l’exposition
  • S. Lamy, M. Maurel, P. Grosclaude, F. Despas, G. Laurent, B. Lepage, C. Delpierre

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.